

DOCUMENTATION ISG-kernel

Functional description Taper link

Short description: FCT-C49

© Copyright
ISG Industrielle Steuerungstechnik GmbH
STEP, Gropiusplatz 10
D-70563 Stuttgart
All rights reserved
www.isg-stuttgart.de
support@isg-stuttgart.de

Preface

Legal information

This documentation was produced with utmost care. The products and scope of functions described are under continuous development. We reserve the right to revise and amend the documentation at any time and without prior notice.

No claims may be made for products which have already been delivered if such claims are based on the specifications, figures and descriptions contained in this documentation.

Personnel qualifications

This description is solely intended for skilled technicians who were trained in control, automation and drive systems and who are familiar with the applicable standards, the relevant documentation and the machining application.

It is absolutely vital to refer to this documentation, the instructions below and the explanations to carry out installation and commissioning work. Skilled technicians are under the obligation to use the documentation duly published for every installation and commissioning operation.

Skilled technicians must ensure that the application or use of the products described fulfil all safety requirements including all applicable laws, regulations, provisions and standards.

Further information

This link

https://www.isg-stuttgart.de/de/isg-kernel/kernel-downloads.html

contains further information on messages generated in the NC kernel, online help, PLC libraries, tools, etc. in addition to the current documentation.

Disclaimer

It is forbidden to make any changes to the software configuration which are not contained in the options described in this documentation.

Trade marks and patents

The name ISG®, ISG kernel®, ISG virtuos®, ISG dirigent® and the associated logos are registered and licensed trade marks of ISG Industrielle Steuerungstechnik GmbH.

The use of other trade marks or logos contained in this documentation by third parties may result in a violation of the rights of the respective trade mark owners.

Copyright

© ISG Industrielle Steuerungstechnik GmbH, Stuttgart, Germany.

No parts of this document may be reproduced, transmitted or exploited in any form without prior consent. Non-compliance may result in liability for damages. All rights reserved with regard to the registration of patents, utility models or industrial designs.

Taper link Page 2 / 20

General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

- Indicates an action.
 - ⇒ Indicates an action statement.

⚠ DANGER

Acute danger to life!

If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.

A CAUTION

Personal injury and damage to machines!

If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.

Attention

Restriction or error

This icon describes restrictions or warns of errors.

Notice

Tips and other notes

This icon indicates information to assist in general understanding or to provide additional information.

Example

General example

Example that clarifies the text.

Programing Example

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

Release Note

Specific version information

Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.

Taper link Page 3 / 20

Table of contents

	Preface	2	
	General and safety instructions	3	
1	Overview	6	
	Description		
	2.1 Configuration	11	
	2.2 Restrictions	12	
3	Programming	13	
4	Applications 14		
5	Parameter	18	
6 Appendix		19	
	6.1 Suggestions, corrections and the latest documentation		

List of figures

Fig. 1:	Tool radius compensation - tool radius path	7
Fig. 2:	Placing the function in the channel	8
Fig. 3:	Without taper link function at the outer corner	9
Fig. 4:	Active taper link function at outer corner	9
Fig. 5:	Simple example without taper link functionality	10
Fig. 6:	Simple example with active taper link functionality	10
Fig. 7:	Stepped linear motions without taper link functionality	14
Fig. 8:	Stepped linear motions with active taper link functionality	14
Fig. 9:	Stepped circular motions without taper link functionality	15
Fig. 10:	Stepped circular motions with active taper link functionality	15
Fig. 11:	Cone-shaped element without taper link functionality	16
Fig. 12:	Cone-shaped element with active taper link functionality	16
Fig. 13:	Pyramid-shaped element without taper link functionality	17
Fig. 14:	Pyramid-shaped element with active taper link functionality	17

1 Overview

Task

In a 2-path application with active tool radius compensation, the "taper link" functionality is intended to ensure that the programmed wire angle is retained even if additional motion blocks are required.

Release Note

This functionality is available as of CNC Build V3.1.3108.

Notice

This function is an additional option requiring a license.

Properties

There must be a 2-path configuration. The functionality requires an active tool radius compensation in both paths.

Programming

The function is activated by the #TRC command with the TAPERLINK option [▶ 13]. The function is only effective if the option is selected and tool radius compensation (G41/G42) is active.

Mandatory note on references to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HTML5, CHM) but not in pdf files since pdfs do not support cross-linking.

Taper link Page 6 / 20

2 Description

The condition for using the taper link function is a 2-path configuration [11].

Tool radius compensation permits the programming of a workpiece contour irrespective of tool geometry. When tool radius compensation is selected (G41, G42), a tool path is calculated that is equidistant to this programmed tool contour at a distance of the "tool radius".

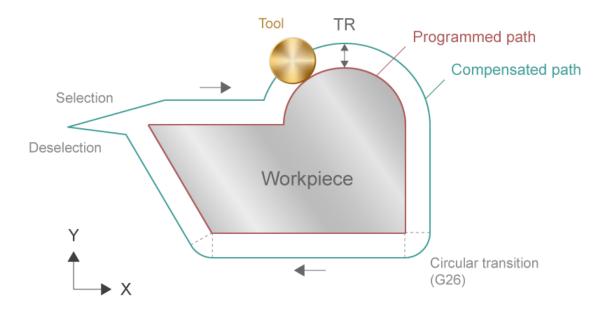


Fig. 1: Tool radius compensation - tool radius path

When an equidistant path is generated, tool radius compensation inserts contour elements in order to obtain a continuous contour (C1). Using tool radius compensation to insert contour elements is path-specific and is dependent on the geometric transitions of each contour. As a result, the two contours have a different number of geometric elements.

The taper link function then synchronises the reference (lower) and secondary (upper) paths in order to retain the originally programmed connection (wire angle) between the two paths.

Taper link Page 7 / 20

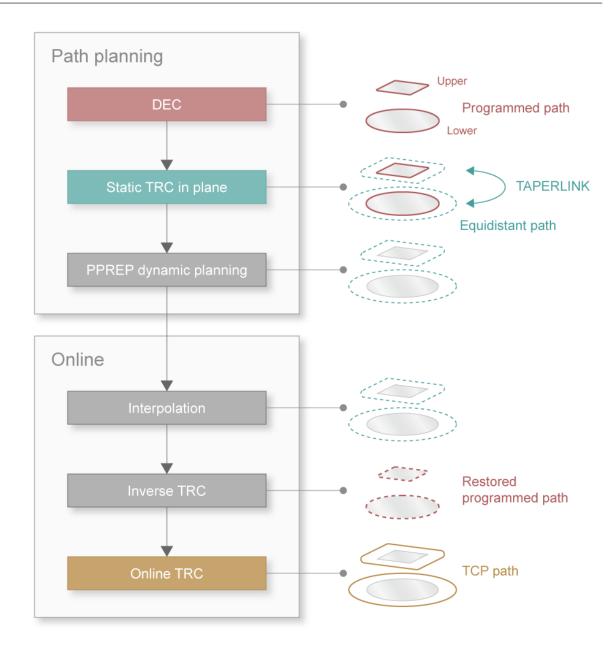


Fig. 2: Placing the function in the channel

Any geometry (linear, circular) in a contour can result in a compensation motion in the other (linear) path.

The functionality is activated by the NC command #TRC [TAPERLINK=1/2/3] when tool radius compensation (G41/G42) is active.

There is no predefined sequence of NC commands.

Taper link Page 8 / 20

Schematic diagram of taper link function (inactive/active)

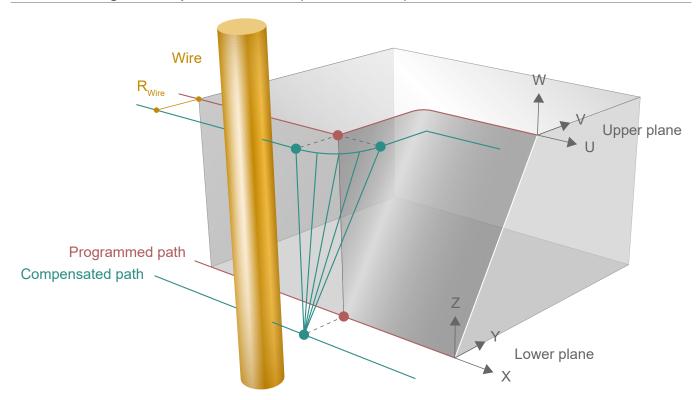


Fig. 3: Without taper link function at the outer corner

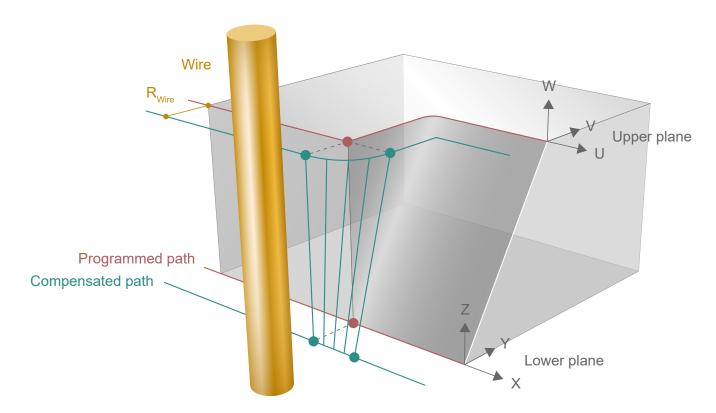


Fig. 4: Active taper link function at outer corner

Taper link Page 9 / 20 The taper link functionality is shown by means of a simple geometry (inactive/active):

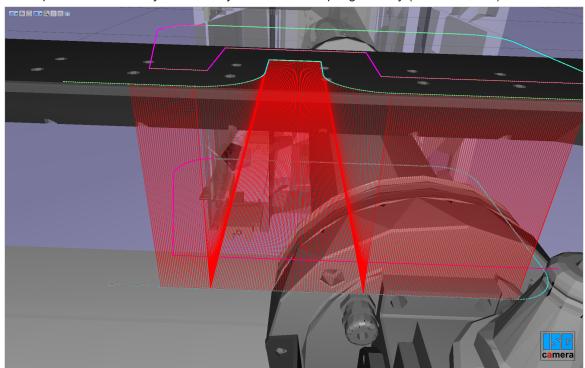


Fig. 5: Simple example without taper link functionality

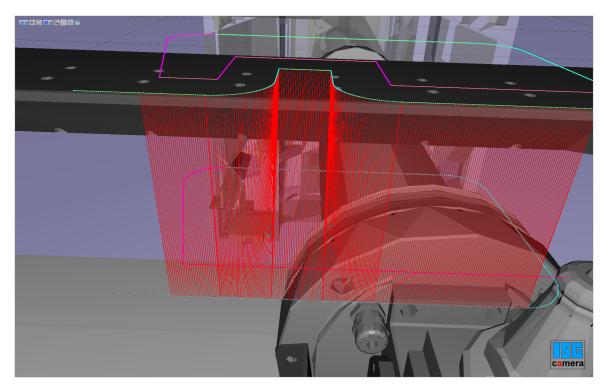


Fig. 6: Simple example with active taper link functionality

Taper link Page 10 / 20

2.1 Configuration

The CNC is configured for 2-path programming in the channel parameter list. The following settings are required:

- Set channel parameter P-CHAN-00261 [▶ 18] (multi_path_configuration) to 1.
- At least 6 axes (2x3 path axes) are configured with no gaps.
- Optional: Depending on the technology, an additional axis may be required as the 7th axis, e.g. with EDM wire erosion, to adapt the height of the upper wire guides for compensation motions. The 7th axis must be configured with no gaps directly after the 6 path axes.

Example

2-path configuration with 7 axes as extract from the channel parameter list:

```
multi path configuration 1
gruppe[0].bezeichnung IPO 1
gruppe[0].achs anzahl 7
gruppe[0].achse[0].log achs nr 1
gruppe[0].achse[0].bezeichnung X
gruppe[0].achse[1].log achs nr 2
gruppe[0].achse[1].bezeichnung Y
gruppe[0].achse[2].log achs nr 3
gruppe[0].achse[2].bezeichnung Z
gruppe[0].achse[3].log achs nr 4
gruppe[0].achse[3].bezeichnung U
gruppe[0].achse[4].log achs nr 5
gruppe[0].achse[4].bezeichnung V
gruppe[0].achse[5].log achs nr 6
gruppe[0].achse[5].bezeichnung W
gruppe[0].achse[6].log achs nr 7
gruppe[0].achse[6].bezeichnung Z1
```

Axes X, Y, Z with index [0..2] are used for interpolation in the lower plane and axes U, V, W with index [3..5] are used for interpolation in the upper plane. Axis Z1 with index [7] defines the position of the upper wire guide in the Z direction. The Z height is required to calculate the motions of the wire guides.

Taper link Page 11 / 20

2.2 Restrictions

A taper link function of any contour in the upper or lower path results in a compensation on the other linear contour.

- Taper link compensations are only possible for linear elements.
- The range for compensations only extends to the previous or following block, starting from the currently considered block transition.
- The secondary and reference planes may not be rotated. Only linear offsets using Cartesian transformations are permitted.
- The functionality may only be used in the G17 plane.

Taper link Page 12 / 20

3 Programming

The TAPERLINK option permits synchronisation between the reference path and the s3econdary path in a 2-path configuration in order to obtain the optimum wire angle. See [FCT-C49, section: Description [\triangleright 7]].

The condition for using this function is a 2-path configuration [▶ 11] and selection of tool radius compensation using G41 or G42.

Syntax:

#TRC [[TAPERLINK=..]]

TAPERLINK =.. Define mode for the taper link function.

- 0: Taper link function inactive (default).
- 1: Taper link active: Compensation is active on both paths; automatic detection.
- 2: Taper link active: Reference path compensates the secondary path.
- 3: Taper link active: Secondary path compensates the reference path.

Taper link Page 13 / 20

4 Applications

Case 1: Stepped linear elements

The two figures below show stepped linear motions with active and inactive taper link functionality (see lower section of the red lines).

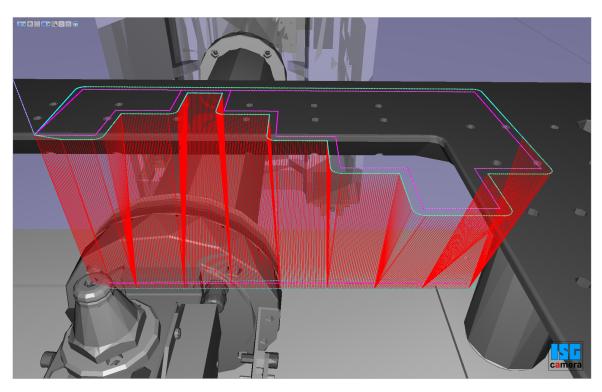


Fig. 7: Stepped linear motions without taper link functionality

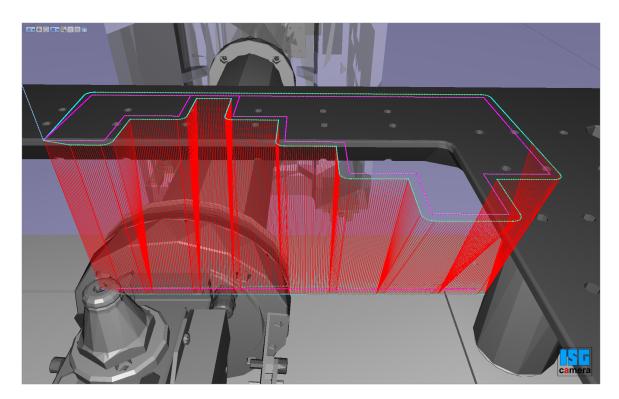


Fig. 8: Stepped linear motions with active taper link functionality

Taper link Page 14 / 20

Case 2: Stepped circular elements

The two figures below show stepped circular motions with active and inactive taper link functionality (see lower section of the red lines).

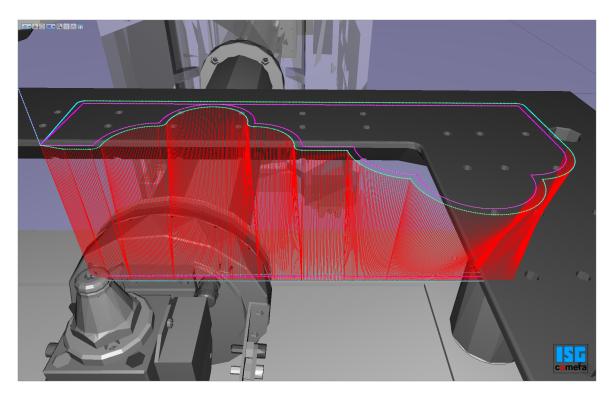


Fig. 9: Stepped circular motions without taper link functionality

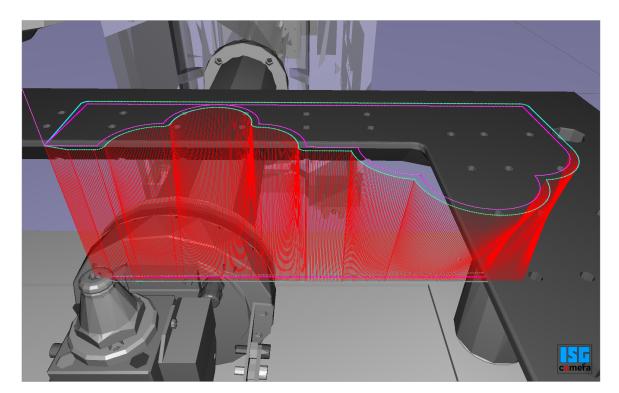


Fig. 10: Stepped circular motions with active taper link functionality

Taper link Page 15 / 20

Case 3: Cone with circular element

The two figures below show a cone-shaped element based on a circular element with active and inactive taper link functionality (see lower section of the red lines).

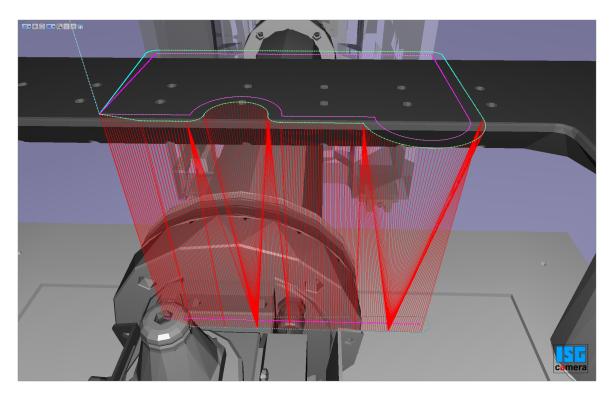


Fig. 11: Cone-shaped element without taper link functionality

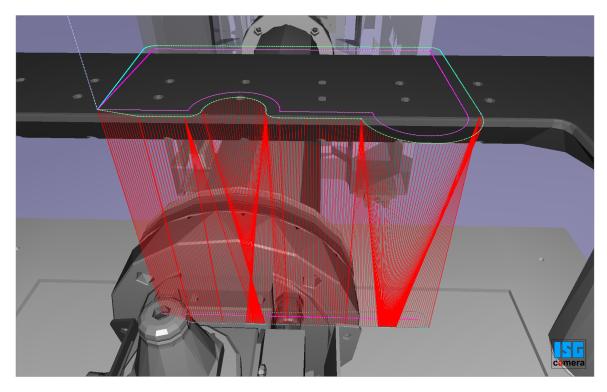


Fig. 12: Cone-shaped element with active taper link functionality

Taper link Page 16 / 20

Case 4: Pyramid-shaped element

The two figures below show a pyramid-shaped element with active and inactive taper link functionality (see lower section of the red lines).

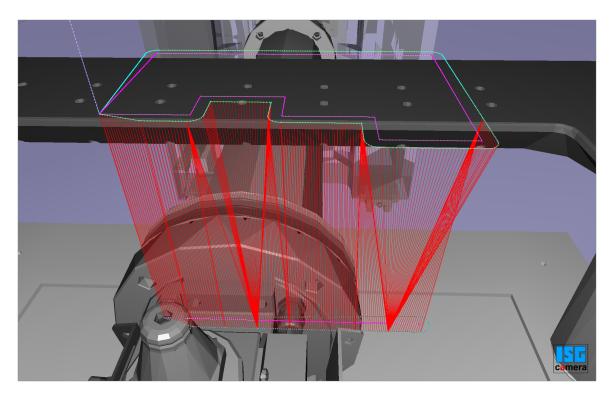


Fig. 13: Pyramid-shaped element without taper link functionality

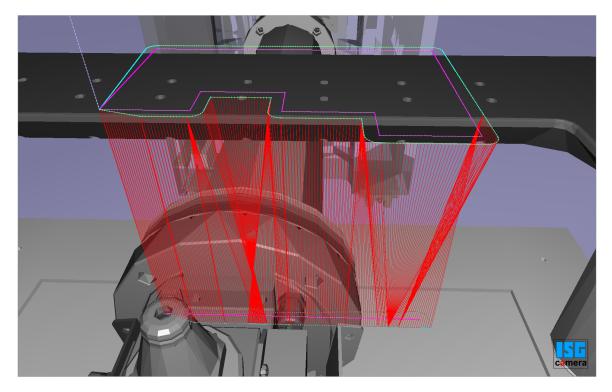


Fig. 14: Pyramid-shaped element with active taper link functionality

Taper link Page 17 / 20

5 Parameter

The following parameters are required in the channel in order to use a 2-path configuration and 2-path programming:

P-CHAN-00261	Enable 2-path programming
Description	This parameter enables the NC syntax for 2-path programming. It permits the programming of two synchronous motions (paths) for 2 axis groups in the same NC block. The motions are separated in the NC block by a colon ':'.
	<pre><global> <separator> <path1> <separator> <path2> Nxx G01 G90 F100 : X100 Y100 Z0 : U100 V100 W0</path2></separator></path1></separator></global></pre>
Parameter	multi_path_configuration
Data type	BOOLEAN
Data range	0/1
Dimension	
Default value	0
Remarks	When 2-path programming is active, the colon ':' signifies a separator in the syntax. Jump marks to block numbers Nxx: (also called expression labels) is not possible, but only jumps on string labels are allowed.

P-CHAN-00550	Definition of functionalities for tool radius compensation
Description	This parameter defines individual functionalities for tool radius compensation.
Parameter	configuration.tool_radius_comp.function
Data type	STRING
Data range	MULTI_PATH: 2-path configuration and 2-path programming active -: No functionalities defined.
Dimension	
Default value	*
Remarks	Parameter is available as of the following Builds: V2.11.2040.04 ; V2.11.2810.02 ; V3.1.3079.17 ; V3.1.3107.10
	* Note: The default value of variables is a blank string.
	The parameters P-CHAN-00555 and P-CHAN-00556 can be used to define functions depending on the machining mode.

Taper link Page 18 / 20

6 Appendix

6.1 Suggestions, corrections and the latest documentation

Did you find any errors? Do you have any suggestions or constructive criticism? Then please contact us at documentation@isg-stuttgart.de.

The latest documentation is posted in our Online Help (DE/EN):

QR code link: https://www.isg-stuttgart.de/documentation-kernel/

The link above forwards you to:

https://www.isg-stuttgart.de/fileadmin/kernel/kernel-html/index.html

Notice

Change options for favourite links in your browser;

Technical changes to the website layout concerning folder paths or a change in the HTML framework and therefore the link structure cannot be excluded.

We recommend you to save the above "QR code link" as your primary favourite link.

PDFs for download:

DE:

https://www.isg-stuttgart.de/produkte/softwareprodukte/isg-kernel/dokumente-und-downloads

EN:

https://www.isg-stuttgart.de/en/products/softwareproducts/isg-kernel/documents-and-downloads

Email: documentation@isg-stuttgart.de

Taper link Page 19 / 20

© Copyright
ISG Industrielle Steuerungstechnik GmbH
STEP, Gropiusplatz 10
D-70563 Stuttgart
All rights reserved
www.isg-stuttgart.de
support@isg-stuttgart.de

