

DOCUMENTATION ISG-kernel

Functional description MultiCore

Short Description: FCT-C39

© Copyright ISG Industrielle Steuerungstechnik GmbH STEP, Gropiusplatz 10 D-70563 Stuttgart All rights reserved www.isg-stuttgart.de support@isg-stuttgart.de

Preface

Legal information

This documentation was produced with utmost care. The products and scope of functions described are under continuous development. We reserve the right to revise and amend the documentation at any time and without prior notice.

No claims may be made for products which have already been delivered if such claims are based on the specifications, figures and descriptions contained in this documentation.

Personnel qualifications

This description is solely intended for skilled technicians who were trained in control, automation and drive systems and who are familiar with the applicable standards, the relevant documentation and the machining application.

It is absolutely vital to refer to this documentation, the instructions below and the explanations to carry out installation and commissioning work. Skilled technicians are under the obligation to use the documentation duly published for every installation and commissioning operation.

Skilled technicians must ensure that the application or use of the products described fulfil all safety requirements including all applicable laws, regulations, provisions and standards.

Further information

Links below (DE)

https://www.isg-stuttgart.de/produkte/softwareprodukte/isg-kernel/dokumente-und-downloads

or (EN)

https://www.isg-stuttgart.de/en/products/softwareproducts/isg-kernel/documents-and-downloads

contains further information on messages generated in the NC kernel, online help, PLC libraries, tools, etc. in addition to the current documentation.

Disclaimer

It is forbidden to make any changes to the software configuration which are not contained in the options described in this documentation.

Trade marks and patents

The name ISG[®], ISG kernel[®], ISG virtuos[®], ISG dirigent[®] and the associated logos are registered and licensed trade marks of ISG Industrielle Steuerungstechnik GmbH.

The use of other trade marks or logos contained in this documentation by third parties may result in a violation of the rights of the respective trade mark owners.

Copyright

© ISG Industrielle Steuerungstechnik GmbH, Stuttgart, Germany.

No parts of this document may be reproduced, transmitted or exploited in any form without prior consent. Non-compliance may result in liability for damages. All rights reserved with regard to the registration of patents, utility models or industrial designs.

General and safety instructions

Icons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Please read the (safety) instructions carefully and comply with them at all times.

Icons in explanatory text

Indicates an action.

⇒ Indicates an action statement.

DANGER Acute danger to life!

If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life and health.

Personal injury and damage to machines!

If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage to machines.

Attention

Restriction or error

This icon describes restrictions or warns of errors.

Notice

Tips and other notes

This icon indicates information to assist in general understanding or to provide additional information.

Example

General example

Example that clarifies the text.

Programing Example

NC programming example

Programming example (complete NC program or program sequence) of the described function or NC command.

Release Note

Specific version information

Optional or restricted function. The availability of this function depends on the configuration and the scope of the version.

Table of contents

	P	reface.		2
	G	eneral	and safety instructions	3
1	0	vervie	N	6
2	D	escript	ion	7
	2.1	Standa	ard configuration of CNC tasks	8
	2.2	Config	juration of GEO tasks	9
	2.3	Assigr	nment of CNC task and CNC channel	11
3	С	NC sch	neduler	12
4	C	onfiqu	ration	14
	4.1	Config	juration in TwinCAT	14
	4.2	Real-t	ime Linux / Windows Simulator	20
5	D	iagnos	tic options	22
6	P	aramet	er	26
	6.1	Overv	iew	26
	6.2	Descri	ption	27
		6.2.1	restart	27
		6.2.2	Channel parameters	28
		6.2.3	Real-time parameter	29
		6.2.4	CNC objects	30
7	Α	ppendi	x	32
	7.1	Sugge	estions, corrections and the latest documentation	32
	K	eyword	l index	33

List of figures

Structure of a multi-channel CNC	7
Standard tasks of a multi-channel CNC	8
Initial position (without multicore channel distribution)	9
Distribution of GEO tasks of a 4-channel CNC to multiple cores	10
Assignment by context	11
Overview of task order in the cycle	12
Determining the available CPU cores	14
Generating a new GEO task	15
Create a GEO task with name	15
Settings of task priorities	15
Create context for new GEO task	16
Assign the new GEO task to the context created	17
Assign the interpolator of channel 2 to the new context	17
Logging the MultiCore functions	22
Available CNC objects in the ISG Object Browser	24
Internal logging format	25
	Structure of a multi-channel CNC

1 Overview

Task

The aim here is to split CNC functions requiring intensive calculation times among separate CPU cores with multicore processors.

Possible applications

Individual decoding processes and web interpolators can be split among different CPU cores in a multi-channel machine configuration.

Release Note

This function is available as of CNC Build V3.1.3077

Parameterisation

Parameterisation depends on the real-time system used.

- For TwinCAT systems in the TwinCAT development environment
- · For real-time Linux using real-time and channel parameters

Mandatory note on references to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for the Programming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HTML5, CHM) but not in pdf files since pdfs do not support cross-linking.

2 Description

Structural description of a multi-channel CNC

A CNC can be designed for several NC channels with additional single-axis interpolators.

The processing of an NC program can be executed in each channel. A group of axes moved together is used for this.

A single-axis interpolator can move a single axis, e.g, by a PLC command.

Fig. 1: Structure of a multi-channel CNC

HMI:	User interface	IF
DEC:	Decoder	S
TRC:	Tool radius compensation	Ν
PPREP:	Path preparation	

- PO: Path interpolator
- SAI: Single-axis interpolator
- MC: Motion Control

2.1 Standard configuration of CNC tasks

By default, the CNC consists of 3 tasks which can be implemented in a real-time operating system.

- COM task: Driver supplying display values for a user interface.
- SDA task: Consists of the decoder, calculation of tool radius compensation and interpolation preparation (DEC, TRC, PPREP).
- GEO task: Executes the actual cycle-synchronous interpolation, i.e. generates the cyclic axis command values and outputs to the drives.

Depending on the CNC application, the CNC tasks can be prioritised differently and assigned with corresponding cycle times.

Below are examples of several criteria that affect the tasks:

- The COM task affects the transfer rate of objects for the user interface and can be adapted depending on the response time of the display.
- It is recommended to adjust the SDA task for HSC machining which involves a high volume of short motion information. It is advisable to select a short cycle time for the SDA task (decoder) in order to supply the interpolation with a sufficient number of motion blocks and achieve the required programmed velocity (data throughput, block cycle time).
- In general, the GEO task must run synchronously with the bus cycle time so that the drive receives a new command position in each cycle.

Fig. 2: Standard tasks of a multi-channel CNC

2.2 Configuration of GEO tasks

Standard task distribution of a multi-channel configuration

Fig. 3: Initial position (without multicore channel distribution)

The interpolation of each CNC channel can be assigned to a GEO task based on this standard task distribution. Each GEO task can be assigned 1-n channels of the CNC.

In the case below, two additional tasks, GEO 2 and GEO 3, are integrated in a 4-channel configuration:

Fig. 4: Distribution of GEO tasks of a 4-channel CNC to multiple cores

2.3 Assignment of CNC task and CNC channel

The individual channel functions (SDA, COM or IPO) are indirectly assigned to a CNC task by defining contexts.

The configuration of contexts is described in the next section.

Notice

COM is not split into channels. SAIs are executed in the GEO of the 1st channel.

Fig. 5: Assignment by context

3 CNC scheduler

The real-time part of the CNC controller runs in the GEO task. The GEO task performs the following tasks, among others, in each CNC cycle:

Identifier	Task
Input	Read out axis actual values/status/etc. from the fieldbus
Output	Output new axis command values/status/etc. to the fieldbus
IPO	Interpolation, calculation of new axis command values, channel-specific
CHAN	Display, channel-specific

The CNC scheduler defines the order in which these tasks are executed. Defining the suitable order is dependent on the existing hardware (drives, fieldbus,etc.)

The following task orders are available:

- STANDARD
- COMPLETE
- SWITCHED

Fig. 6: Overview of task order in the cycle

STANDARD

Especially with conventional +-10V drives, it is important to output command values in cycles that are as constant as possible. To avoid fluctuations, the command values calculated in the previous cycle are output to STANDARD directly at the start of the cycle. Then actual values are read in, compensations are calculated and new command values are calculated by IPO for the next cycle.

This order results in a delay between interpolation and the output of command values.

COMPLETE

If the axis parameter P-AXIS-00276 "field_bus_allows_optimised_schedule" is set for all axes, actual values/compensations are first processed and only then are the new command values output. This prevents any delay between interpolation and output.

If the parameter P-AXIS-00276 is not set for all axes, the schedule corresponds to the STAND-ARD case.

SWITCHED

For digital drives, the order can be further optimised to avoid any delay. In SWITCHED mode, actual values are read in

- 1. interpolated
- 2. .
- 3. Compensations calculated and command values output

Configuration

In TwinCAT, the schedule is set in the "Context" tab of the "CNC" node:

ask-1Kanal-tc +¤ CNC Startup De	fault SDA Manu	al MDS	Kontext: Param List						
Тур	Task		Name	Priority	Cycle Time	Task Port	RT-CPU	Sort Order	Scheduling
COM 0	02010030	-	CNC-Task COM	13	10000	556	Default (11)	0 _	-
SDA 0	02010020	-	CNC-Task SDA	8	10000	555	Default (11)	0 _	-
GEO 0	02010010	-	CNC-Task GEO	3	2000	554	CPU 11	0 _	Standard 🗠
Löschen	GEO hinzuf.	SDA	s zufügen	s	tandard				Standard Complete Switched

In real-time Linux or Windows Simulator, the P-RTCF-00018 [▶ 29] parameter is used for this.

4 Configuration

4.1 Configuration in TwinCAT

The following steps are required for a new CNC task:

- 1. Determine the available CPU cores
- 2. Create a new CNC task
- 3. Set the properties of the new CNC task
- 4. Generate the context for the new CNC task
- 5. Link the new CNC task to the context

Determine the available CPU cores

Before splitting tasks, the available cores on the current CPU must be determined. This is achieved using the "Real-time" and "Read from target system" tabs. The cores can be set to isolated / non-isolated. These cores can then be assigned to the tasks.

SYSTEM	Allokiert /	Verfügbar	32 / 3							
Echtzeit	Available	Cores								
管 Tasks 語 Routing	Verfügbar	e Kerne	8 -	0		Lese vom Ziels	system Setze	e auf Zielsystem		
SE TACOM Objects	Core	RT-Core	Base	Core L	imit			Latency Warnin	g	
	0		1 ms 🖢	80 %			-	(keine)		-
	1		1 ms _	80 %			•	(keine)		•
🖌 🖺 Tasks	2	V	1 ms _	80 %			•	(keine)		-
CNC-Task COM	3		1 ms _	80 %			•	(keine)		-
CNC-Task SDA	4						•			
	5						•			
Compensations	6		1 ms	80 %			-	(keine)		-
Achsen	7	✓ Defau	lt 1 ms	80 %			-	(keine)		-
▲ Hanal_1			_							
Lingänge	-				_					*
Ausgange	Object		RT-Core		Base 1	me (ms)	Cycle Time (ms) Cycle Tick	s Priority	Δ.
SPS		Task GEO	Core 6	-	1 ms		2 ms	2	3	Land.
🚳 SAFETY	CNC	Task SDA	Core 2	•	1 ms		10 ms	10	9	
6. C++	📑 I/O Id	lle Task	Core 3	-	1 ms		1 ms	1	11	
ANALYTICS	CNC	Task COM	Core 3	•	1 ms		10 ms	10	13	

Fig. 7: Determining the available CPU cores

Notice

If you specify the available cores incorrectly, TwinCAT may not start properly.

Generate another GEO task for interpolation

By default, a CNC GEO task is created for the CNC. Synchronous tasks must be created to be able to create the interpolation of individual CNC channels on different GEO tasks.

The following sequence describes the procedure:

Fig. 8: Generating a new GEO task

Fig. 9: Create a GEO task with name

The priority, cycle time and port must be modified or checked for each new GEO TASK created.

MultiCoreV1 .⇔ ×					
Task Online Parameter (Onlin	ne) Symbole hinz	ufügen			
Name: CNC-Task G	iEO2	Port		567	\$
Auto-Start		Obje	kt ld:	0x02010050	
Auto Priorität Management		Optio	onen		
Priorität: 4	÷		Deaktivie	eren	
Zyklusticks: 2 🖨	2.000 ms		òymbole	erzeugen	
Start tick (modulo):	0 ≑	[Incl.	externe Symbole	
Einzelnes input update Pre ticks:	0 ‡				
Warnung bei Überschreitu	ing				
Messagebox Watchdog Zyklen:	0	⊡ \	loating	point exceptions	

Fig. 10: Settings of task priorities

For the port number it is recommended to use the next number after the port numbers of the existing CNC tasks.

Each GEO task requires a unique priority, whereby the priority of a new task created can be based on the priority of the existing GEO task.

All GEO tasks should be ranked higher in priority than SDA or COM tasks.

Notice

The cycle times of all GEO tasks must have the same setting.

Creating the context between CPU core and the new CNC task

Projektmappen-Explorer durchsuchen (S 🔑 🕶 🗖						
Projektmappe "MultiCoreV1" (1 von 1 Proj	Тур	Task	Name			F
 MultiCoreV1 	COM 0	02010040 💌	CNC-Task COM			1
A G SYSTEM	SDA 0	02010030 💌	CNC-Task SDA			ç
	GEO 0	02010020 💌	CNC-Task GEO			3
 Echtzeit I/O Idle Task Tasks Routing Type System TcCOM Objekte MOTION MOTION Tasks Tasks CNC Tasks CNC-Task COM CNC-Task SDA CNC-Task GEO 						
ট CNC-Task GEO2 ♣ Prozessabbild ♥ Compensations	Lösche	GEO hinzuf.	SDA zufügen			Standard
Achsen	Channe	2	SDA	GEO		Axis
▲ ➡ Kanal_I Eingänge	Kanal_1		SDA 0	GEO 0	-	Achse_1
Ausgänge	Kanal_2		SDA 0	-	-	Achse_2
▷ 🚔 Kanal_2						Achse_3

Fig. 11: Create context for new GEO task

Fig. 12: Assign the new GEO task to the context created

Fig. 13: Assign the interpolator of channel 2 to the new context

Example

Configuration of 10 channels (CNC GEO task) on 10 CPU cores

10Task	-10Kanal-Tc 👳 🕽	×											
Einst	tellungen Online	Prior	itäten C++ [) ebugger									
Bo	outer Speicher				G	lobale '	í ask Ko	onfiguration					
Kor	nficurierte Größe IM	B1	32	_		dax St.	eck Grij	iAe (KR) 64KB V					
Alle		0,	32 / 31			Tubin a	1011-01.2						
	Mett 7 Yonugoa		32731										
Ver	rfügbare Kerne (gete	eilt/isc	oliert): 9	÷ 3)	L	ese vor	n Zielsystem Setze auf Zielsyste	m				
Co	ore	RT-0	Core		Base Tim	e	Core L	.imit		La	atency Warning		
0((Shared)	~			1 ms	-	80 %			• (k	eine)		-
1((Shared)	~			1 ms	-	80 %			- (k	eine)		•
2 ((Shared)	~			1 ms	-	80 %			_ (k	eine)		•
3 ((Shared)				1 ms	-	80 %			- (k	eine)		•
4 ((Shared)	~			1 ms	-	80 %			- (k	eine)		•
5 ((Shared)	~			1 ms	-	80 %			- (k	eine)		•
6((Shared)	~			1 ms	-	80 %		-	(k	eine)		•
7((Shared)	•	Default		1 ms	-	80 %		<u> </u>	(k	eine)		•
8((Shared)									·			
9((Isolated)	~			1 ms	-	100 %			(k	eine)		•
10) (Isolated)	~			1 ms	-	100 %			(k	eine)		•
11	(Isolated)	•			1 ms	-	100 %			(k	eine)		-
											1		_
OŁ	bject			RT-Core				Base Time (ms)	Cycle Time (ms)		Cycle Ticks	Priority	\triangle
CN	NC-Task GEO			Core 11			-	1 ms	2 ms		2	4	
CN	NC-Task GEO1			Core 10			-	1 ms	2 ms		2	5	
CN	NC-Task GEO2			Core 9			-	1 ms	2 ms		2	6	
CN	NC-Task GEO3			Core 6			-	1 ms	2 ms		2	7	
CN	NC-Task GEO4			Core 5			-	1 ms	2 ms		2	8	
CN	NC-Task GEO5			Core 4			-	1 ms	2 ms		2	9	
CN	NC-Task GEO6			Core 3			-	1 ms	2 ms		2	10	
CN	NC-Task GEO7			Core 2			-	1 ms	2 ms		2	11	
CN	NC-Task GEO8			Core 1			-	1 ms	2 ms		2	12	
CN	NC-Task GEO9			Core 0			•	1 ms	2 ms		2	13	
1/0	O Idle Task			Default (<i>7</i>)		-	1 ms	1 ms		1	15	
CN	NC-Task SDA			Default (7)		-	1 ms	10 ms		10	16	
CN	NC-Task COM			Default (,7)		-	1 ms	5 ms		5	17	

			_	_		_							_								_			_	_			_	_		-				_
1000 µ	°i/o ia	e Task	CPL	, דעקו	.8 µs	500)0 µs	C-Ta	ask CO	M, CP	υ70	L1 μs	10	000 y	SIC-	lask !	SDA,	CPU	754.9	μs	20	00 µs	NC-T	ask G	EO, C	ΡÚ 1	11.2	μs	2	<mark>ე00 ლ</mark>	ас-т	ask Gl	E01, 0	:PU 1	05.2
			T	otal 2	2.0 µs					To	tal 40	l.7 μs			-	\square		Tota	57.7	μs				\square	т	otal 1	06.1	μs					Т	otal 1(04.7
++		_							-				\vdash	_	-			+	+	-		-	+		-	+	+	+		\vdash	-	-		+	+
									_		-11				_				_							_	_			\square	_				-
											1																								Г
							Ť				1				-				-							-	-							-	t
									-			-			+			-	-	-			-		-	+	+				-			-	+
									_		╢	_		_	_			_	-			_	_		_	_	+-				_			_	+
											11																								
0.00						0.0					П										:0.		~~~~	•	~	٨n		h~,	1.0				~~	sn.	
υμs						, o p						_		15	_	_				_	100	15		_	_		_			μs					-
2000 μ	NC-Ta	sk GE()2, CF	່ບ ອ່	3.0 µs	200)0 μs _N	IC-Ta	sk GEI	33, CF	U 62	.2 µs	20	00 µs	ис-т	ask G	EO4	. CPU	54.6	μs	20	00 µs	NC-T	ask G	E05,	CPU	45.8	μs	2	300 μ	SNC-T	ask G	E06,	ceu a	34.:
			Tot	al 105	5.6 μs					Tota	al 107	.0 µs				1		Fotal	109.6	μs				\square	Т	otal 1	11.1	μs					Т	otal 1(08.0
+ +			-	\vdash			-	-		-				-	+	-		-	+	+	\vdash		-		-	+	+	+			-			+	+
+	_				_													_	_							_									+
																																			T
++			-				-	-				-			+	-		-	+		\vdash		+		-	+	+				-			-	+
	_		_		_		_	-		_		_		_	-	-		_	-	-	\vdash		-		_	-	-	-			_			-	+
																			_							_	_			\square					1
	-+		~^	~	~		ساسم	-	~~~	~~ \$	~-	~~			~~~	~~	~~	s	~	m			~~~	~~	~~	sn	+-	\sim	10	115	~~		~	s	+-
					_	1.1.1									-	_		_	-	_	1								1		_				-
2000 µ	SNC-Ta	sk GE(07, CF	PU 25	5.1 μs	200)0 μs _N	IĊ-Ta	sk GEI	38, CF	U 17	.1 µs	20	00 μs	NĊ-T	ask G	E09	. CPU	06.7	μs															
			Tot	al 108	3.2 μs					Tota	al 109	l1 μs						Fotal	110.0	lμs															
	-														-	-			+																
++			-				-	-		_				-	-	-		-	+	-															
																			_																
																			-																
++			-				-	-		_				-	+	+-		-	+	-															
	_		_				_							_	_			_	-																
	-		~~~		m	1-	~	4	m	m	~	m	1-	-		~	w.	~	-	-															

4.2 Real-time Linux / Windows Simulator

The threads are assigned to the cores in the real-time configuration of the CNC. Parameterisation takes place in rt_conf.lis.

Example

Parameterisation example: rt_conf.lis

```
*****
#
#
#
  RT configuration
#
  *****
#
                      1 highest
             [1; 99]
#
  LINUX
              [0; 127] 127 highest
#
  RTX
#
             [0; 255] O
                           highest
  VXWORKS
#
  WindowsCE [0; 255] 0
                           highest, 9 CANopen, 10-15 CNC, 16-64 PLC
# trace bit : 0 - off, 1 - DTR on COM1, 2 - RTS on COM1, 3 - DTR on
COM2, 4 - RTS on COM2
#
#
interrupt source
                                       1
                                            # 1 == internal timer, 2 ==
external \overline{IRQ}, 3 == external semaphore
cycle_time
                                    2000
                                            # cycle time in micro s
time slice
                                    1000
windows time
                                            # 0 turned off
                                       0
schedule
                                       1
                                            # Standard
#
                                          GEO1
thread[0].name
thread[0].context info
                                          0
thread[0].cycle
                                          2000
                                          31 # HIGHEST
thread[0].priority
thread[0].error on overflow
                                          1
thread[0].function[0].name
                                          task int
thread[0].function[0].calls per cycle
                                          1
thread[0].function[0].trace bit
                                          1
#
thread[1].name
                                          BACKGROUND
thread[1].context info
                                          4
thread[1].cycle
                                          1000
thread[1].priority
                                          34 # NORMAL
thread[1].error on overflow
                                          0
thread[1].function[0].name
                                          task rnd
thread[1].function[0].calls per cycle
                                          1
thread[1].function[0].trace bit
                                          3
#
thread[2].name
                                          MMI DRIVER
thread[2].context info
                                          6
thread[2].cycle
                                          12000
thread[2].priority
                                          35
thread[2].error on overflow
                                          0
thread[2].function[0].name
                                          task mmi driver
thread[2].function[0].calls_per_cycle
                                          1
thread[2].function[0].trace bit
                                          0
#
                                          COM
thread[3].name
thread[3].context info
                                          5
                                          4000
thread[3].cycle
```

```
thread[3].priority
                                              35
thread[3].error on overflow
                                              0
thread[3].function[0].name
                                              task com
thread[3].function[0].calls per cycle
                                              1
thread[3].function[0].trace_bit
                                              4
#
thread[4].name
                                              GEO2
thread[4].context info
                                              1
thread[4].cycle
                                              2000
thread[4].priority
                                              31 # HIGHEST
thread[4].error on overflow
                                              1
[0].function[0].name
                                        task int
thread[4].function[0].calls_per_cycle
                                              1
thread[4].function[0].trace_bit
                                              1
#
# external_thread[0].semaphore_name
# external_thread[0].cycle
                                           external sps
                                           10000
#
End
```

5 Diagnostic options

The internal CNC schedule can be logged to diagnose MultiCore functions. This can take place at different times or interactions:

- automatically at CNC start-up
- implicitly on storing/requesting CNC diagnostic data
- by writing a CNC object

Logging first takes place in an internal logging format. Logging is then prepared in a subsequent step into a suitable representation (text format, view).

Controller start-up

For controller start-up, the logging time can be set using P-STUP-00213 [▶ 27] of the schedule events. Logging is deactivated with a value=0 (default).

Events are logged to the text file specified in P-STUP-00214 [> 27].

Example

Parameterisation example for diagnosing MultiCore events in the start-up list

Logging in diagnostic data

When CNC diagnostic data is requested, the past log entries of the schedule (history) are output automatically. The length of the logging time is specified as a fixed value. The name of the output file can be modified using the start-up parameter P-STUP-00215 [> 28]

Using CNC objects

The following CNC objects are available for diagnostic purposes:

- ttrace: max. [▶ 30], this parameter can be used to set the maximum number of logs, analogous to P-STUP-00213 [▶ 27]
- ttrace: act. [▶ 30]
- ttrace: filename [▶ 30], analogous to P-STUP-00214 [▶ 27]
- ttrace: history filename [▶ 30], analogous to P-STUP-00215 [▶ 28]
- ttrace: layout written
- ttrace: append to file

ISG Object Brow	ser							- 0	×
C Target: local		~	Search	Export Update	time: 10	00 <table-cell-rows> m</table-cell-rows>	s Stat	tus pane Store Lo	ad
GEO SDA COM	4								
🖻 Channel ID 1 🔺	No	Group	Offset	Name	Туре	Size	Unity	Value	^
HLD	214	0x121301	0x124	ttrace: max.	UNS32	4	-	5000	
	215	0x121301	0x125	ttrace: act.	UNS32	4	-	5000	
···· Axis IDx 1	216	0x121301	0x126	ttrace: filename	STRING	256	-	"D:\temp\multi-geo.log"	
···· Axis IDx 2 ···· Axis IDx 3	217	0x121301	0x127	ttrace: history filename	STRING	256	-	"D:\temp\history.log"	
Axis IDx 4	218	0x121301	0x128	ttrace: layout written	BOOLEAN	4	-	True	
	219	0x121301	0x129	ttrace: append to file	BOOLEAN	1	-	True	~

Fig. 15: Available CNC objects in the ISG Object Browser

Example of outputs

The output format, e.g. the MultiCore-Startup.log, looks like this:

- 1 373664104840000,0,0,4,0,0,0,0
- 2 373664104840200,0,5,5,0,2,0,0
- 3 373664104840300,0,4,5,0,2,0,0
- 4 373664104840400,0,1,5,0,3,0,0
- 5 373664104840500,0,2,5,0,3,0,0 6 373664104840600,0,3,5,0,3,0,0
- 7 373664104840800,0,10,5,0,3,0,0
- 8 373664104840900,0,8,5,0,3,0,1
- 9 373664104841000,0,7,5,0,3,0,0
- 0 373664104841100,0,8,5,0,3,0,2
- 1 373664104841200,0,9,5,0,3,0,0
- 2 373664104841500,0,10,5,0,4,0,0
- 3 373664104841600,0,8,5,0,7,0,4
- 4 373664104841700,0,0,6,0,0,0,0
- 5 373664104841800,0,0,9,0,0,0,3
- 6 373664104841900,0,0,10,0,0,1
- 7 373664104842000,0,0,11,0,0,0,3074
- 8 373664104842000,0,0,12,0,0,0,0

Fig. 16: Internal logging format

6 Parameter

6.1 Overview

restart

ID	Parameter	Description
P-STUP-00213	max_records	Number of logging entries for logging
P-STUP-00214	filename	Name of the output file
P-STUP-00215	history_filename	Name of the history file

Channel parameters

ID	Parameter	Description
P-CHAN-00409	com	Context information of the COM task
P-CHAN-00410	geo	Context information of the GEO task
P-CHAN-00411	sda	Context information of the SDA task

Real-time variables

ID	Parameter	Description
P-RTCF-00017	context	Context information of a thread
P-RTCF-00018	sched- ule 1	Schedule

6.2 Description

6.2.1 restart

P-STUP-00213	Number of logging entries for logging	
Description	This parameter sets the maximum number of log entries for the corresponding task. Real-time events are logged in these entries for diagnostic purposes.	
	After the number is reached, logging stops automatically.	
	With a value=0, no log file is generated at CNC start-up.	
Parameter	trace.geo.max_records	
Data type	SGN32	
Data range	0 <= max_records < MAX_UNS32	
Dimension		
Default value	0	
Remarks		

P-STUP-00214	Name of the output file	
Description	This parameter is used to specify the name of the output file for logging the corresponding task.	
	If no path is specified for the output file, the default path or the main directory of the NC con- troller is used.	
Parameter	task_trace.geo.filename	
Data type	STRING	
Data range	<filename absolute="" path="" relative="" with=""></filename>	
Dimension		
Default value	<twincatinstallation>\Components\Mc\Cnc\Diagnostics\MultiCore-Startup.log</twincatinstallation>	
Remarks		

P-STUP-00215	Name of the history file		
Description	This parameter is used to specify the name of the history file for logging the corresponding task. The file is used to output the history logs.		
	If no path is specified for the file, the default path or the main directory of the NC controller is used.		
Parameter	task_trace.geo.history_filename		
Data type	STRING		
Data range	<filename absolute="" path="" relative="" with=""></filename>		
Dimension			
Default value	<twincatinstallation>\Components\Mc\Cnc\Diagnostics\MultiCore-History.log</twincatinstallation>		
Remarks			

6.2.2 Channel parameters

P-CHAN-00410	Context information of the GEO task		
Description	This parameter defines the context information of the GEO task.		
Parameter	schedule.context.geo or twincat.context.geo		
Data type	UNS32		
Data range			
Dimension			
Default value	0		
Remarks	This parameter is assigned automatically in TwinCAT.		

P-CHAN-00411	Context information of the SDA task		
Description	This parameter defines the context information of the SDA task.		
Parameter	schedule.context.sda or twincat.context.sda		
Data type	UNS32		
Data range			
Dimension			
Default value	0		
Remarks	This parameter is assigned automatically in TwinCAT.		

6.2.3 Real-time parameter

P-RTCF-00017	Context information of a thread		
Description	This parameter assigns the thread to a context. Set the appropriate channel parameters P- CHAN-00410 [▶ 28] and P-CHAN-00411 [▶ 28] to assign the GEO or SDA task of a channel to the same context.		
Parameter	thread[i].context_info		
Data type	UNS32		
Data range	0 <= thread[i].context_info		
Dimension			
Default value	0		
Remarks	Parameterisation example: thread[0].context_info 1		

P-RTCF-00018	Schedule		
Description	Defines the order in which the axis actual values are read in.		
	For the output in which axis command values and interpolation are processed, see CNC scheduler [▶ 12].		
Parameter	thread[i].schedule		
Data type	SGN32		
Data range	STANDARD		
	COMLETE		
	SWITCHED		
Dimension			
Default value	STANDARD		
Remarks	Parameterisation example:		
	thread[1].schedule STANDARD		

6.2.4 CNC objects

Name	ttrace: max.			
Description	This object defines the maximum number of CNC cycles to be logged. This is analogous to P-STUP-00213 [▶ 27].			
Task	GEO (Port 551)			
Index group	0x12130 <c<sub>ID> Index offset 0x124</c<sub>			
Data type	UNS32 Length 4			
Attributes	read/ write Unit -			
Remarks				

Name	ttrace: act.			
Description	This object reads the current fill level of the log file. The log file can be specified by the CNC object "ttrace: filename" [▶ 30] or by P-STUP-00214 [▶ 27].			
Task	GEO (Port 551)			
Index group	0x12130 <c<sub>ID> Index offset 0x125</c<sub>			
Data type	UNS32 Length 4			
Attributes	read Unit -			
Remarks				

Name	ttrace: filename			
Description	This object specifies the name of the output file analogous to P-STUP-00214 [▶ 27] .			
Task	GEO (Port 551)			
Index group	0x12130 <c<sub>ID> Index offset 0x126</c<sub>			
Data type	STRING Length 256			
Attributes	read/ write Unit -			
Remarks				

Name	ttrace: history filename		
Description	This object specifies the name of the history file analogous to P-STUP-00215 [▶ 28] .		
Task	GEO (Port 551)		
Index group	0x12130 <c<sub>ID></c<sub>	Index offset	0x127
Data type	STRING	Length	256
Attributes	read/ write	Unit	-
Remarks			·

7 Appendix

7.1

Suggestions, corrections and the latest documentation

Did you find any errors? Do you have any suggestions or constructive criticism? Then please contact us at documentation@isg-stuttgart.de. The latest documentation is posted in our Online Help (DE/EN):

QR code link: https://www.isg-stuttgart.de/documentation-kernel/ The link above forwards you to: https://www.isg-stuttgart.de/fileadmin/kernel/kernel-html/index.html

Notice

Change options for favourite links in your browser;

Technical changes to the website layout concerning folder paths or a change in the HTML framework and therefore the link structure cannot be excluded.

We recommend you to save the above "QR code link" as your primary favourite link.

PDFs for download:

DE:

https://www.isg-stuttgart.de/produkte/softwareprodukte/isg-kernel/dokumente-und-downloads

EN:

https://www.isg-stuttgart.de/en/products/softwareproducts/isg-kernel/documents-and-downloads

E-Mail: documentation@isg-stuttgart.de

Keyword index

Ρ

P-CHAN-00410	28
P-CHAN-00411	28
P-RTCF-00017	29
P-RTCF-00018	29
P-STUP-00213	27
P-STUP-00214	27
P-STUP-00215	28

© Copyright ISG Industrielle Steuerungstechnik GmbH STEP, Gropiusplatz 10 D-70563 Stuttgart All rights reserved www.isg-stuttgart.de support@isg-stuttgart.de

