

# **DOKUMENTATION ISG-kernel**

# Funktionsbeschreibung Referenzpunktfahrt

Kurzbezeichnung: FCT-M1

© Copyright
ISG Industrielle Steuerungstechnik GmbH
STEP, Gropiusplatz 10
D-70563 Stuttgart
Alle Rechte vorbehalten
www.isg-stuttgart.de
support@isg-stuttgart.de



# Inhaltsverzeichnis

| 1 | Ü   | bersich | nt                                                       | 5  |
|---|-----|---------|----------------------------------------------------------|----|
| 2 | В   | eschre  | ibung                                                    | 6  |
|   | 2.1 | Schnit  | tstellen der Referenzpunktfahrt                          | 9  |
|   | 2.2 | Beauft  | tragung und Durchführung                                 | 11 |
|   | 2.3 |         | strategien der Referenzpunktfahrt                        |    |
|   |     | 2.3.1   | Standard Referenzpunktfahrt                              |    |
|   |     | 2.3.1.1 | Phase 1: Fahren auf den Referenznocken                   |    |
|   |     | 2.3.1.2 | Phase 2: Fahren vom Referenznocken                       | 18 |
|   |     | 2.3.1.3 | Phase 3: Fahren auf den Referenznocken mit Referenzieren |    |
|   |     | 2.3.2   | Fliegende Referenzpunktfahrt für Spindelachsen           |    |
|   |     | 2.3.2.1 | Referenzpunktfahrt ohne Reversieren                      |    |
|   |     | 2.3.3   | Spezielle Referenzpunktfahrtverfahren                    | 25 |
|   |     | 2.3.3.1 | Referenzieren bei der Fahrt vom Nocken                   |    |
|   |     | 2.3.3.2 | Referenzpunktfahrt ohne Reversieren                      | 26 |
|   |     | 2.3.3.3 | Referenzieren mit Nullimpuls ohne Referenznocken         |    |
|   |     | 2.3.3.4 | Referenzieren durch Fahren auf Festanschlag, NC-geführt  | 28 |
|   | 2.4 | Überw   | rachungen während der Referenzpunktfahrt                 |    |
|   |     | 2.4.1   | Wegüberwachung                                           |    |
|   | 2.5 | Überw   | /achungen nach der Referenzpunktfahrt                    |    |
|   |     | 2.5.1   | Referenzverlust (Referenzüberwachung)                    |    |
|   | 2.6 |         | gerte Aktivierung der Nullimpulslogik                    |    |
| _ |     | ·       |                                                          |    |
| 3 | Pa  | aramet  | rierung                                                  | 36 |
|   | 3.1 | Syster  | mparameter                                               | 37 |
|   |     | 3.1.1   | Antriebstypen                                            | 37 |
|   |     | 3.1.1.1 | Simulations-Achse                                        | 37 |
|   |     | 3.1.1.2 | SERCOS Achse                                             | 37 |
|   |     | 3.1.2   | Antriebssysteme mit Referenznocken                       |    |
|   |     | 3.1.2.1 | Referenznocken vorhanden                                 | 40 |
|   |     | 3.1.2.2 | Nockenschalter-Signalpegel                               |    |
|   |     | 3.1.2.3 | Zugriffsart auf das Nockensignal                         | 41 |
|   |     | 3.1.3   | Antriebssysteme mit Nullimpuls                           | 41 |
|   | 3.2 | Ablauf  | parameter                                                | 42 |
|   |     | 3.2.1   | Referenzpunktfahrt mit oder ohne Reversieren             | 42 |
|   |     | 3.2.2   | Verfahrrichtung bei der Referenzpunktfahrt               | 42 |
|   |     | 3.2.3   | Geschwindigkeiten für die Referenzpunktfahrt             | 42 |
|   |     | 3.2.4   | Beschleunigung der Referenzpunktfahrt                    | 42 |
|   | 3.3 | Refere  | enzposition                                              | 43 |
|   | 3.4 | Spezif  | ische Parameter für die Antriebssimulation               | 43 |
|   | 3.5 | Wirksa  | amkeit der Parameter                                     | 44 |
|   | 3.6 |         | netrierungsbeispiele                                     |    |
|   |     | 3.6.1   | Konventionelle Antriebe                                  |    |
|   |     | 3.6.2   | Simulation                                               |    |
|   |     | 3.6.3   | SERCOS mit Nullimpulslatch mit S-0-146                   |    |
| 4 | D:  |         | er                                                       |    |
| • |     |         | ×······                                                  | +0 |



|   |     | chwortverzeichnis                                        |    |
|---|-----|----------------------------------------------------------|----|
|   |     | Anregungen, Korrekturen und neueste Dokumentation        |    |
| 5 | An  | ıhang                                                    | 69 |
|   | 4.3 | Abhängigkeiten von der Art des Referenzierungsverfahrens | 68 |
|   | 4.2 | Beschreibung                                             | 49 |
|   | 4.1 | Übersicht                                                | 48 |



# Abbildungsverzeichnis

| Abb. 1:  | Prinzipielle Anordnung der Endschalter und des Referenznockens einer Maschinenachse     | 7  |
|----------|-----------------------------------------------------------------------------------------|----|
| Abb. 2:  | NC-Steuerung Übersicht                                                                  | 9  |
| Abb. 3:  | Standard-Referenzpunktfahrt im Zeitbereich                                              | 16 |
| Abb. 4:  | Standard-Referenzpunktfahrt                                                             | 16 |
| Abb. 5:  | Referenzpunktfahrt in 3 Phasen, Referenzieren auf den Referenznocken mit Nullimpuls     | 19 |
| Abb. 6:  | Referenzpunktfahrt in 3 Phasen, Referenzieren auf den Referenznocken ohne Nullimpuls    | 20 |
| Abb. 7:  | Zustandsgraph der Spindelbetriebsarten                                                  | 23 |
| Abb. 8:  | Zustandsgraph der Spindelbetriebsarten für digitale Antriebe (z.B. SERCOS)              | 24 |
| Abb. 9:  | Referenzieren bei der Fahrt vom Referenznocken (ohne Nullimpuls)                        | 25 |
| Abb. 10: | Fahren auf den Referenznocken mit Nullimpuls (1 Phase)                                  | 26 |
| Abb. 11: | Fahren auf den Referenznocken ohne Nullimpuls (1 Phase)                                 | 27 |
| Abb. 12: | Referenzieren mit Nullimpuls ohne Referenzpunktnocken                                   | 28 |
| Abb. 13: | Einfluss der Parameter beim Fahren auf Festanschlag                                     | 30 |
| Abb. 14: | Detektion des Nullimpulses erfolgt u.U. nicht zuverlässig                               | 34 |
| Abb. 15: | Aktivierungszeitpunktverschiebung der Nullimpulslogik stellt gleichen Nullimpuls sicher | 35 |
| Abb. 16: | Antriebssystem mit Referenznocken                                                       | 40 |
| Abb. 17: | Nockensignal-Pegel                                                                      | 40 |
| Abb. 18: | Antriebssystem mit Nullimpuls                                                           | 41 |

# 1 Übersicht

## **Aufgabe**

Beim Referenzieren einer Maschinenachse wird das Lageistwertsystem der Maschinenachse

- mit dem Achskoordinatensystem der Maschine und
- der CNC

synchronisiert.

## Eigenschaften

Alle Maschinenachsen, die positioniert werden sollen und keinen Geber besitzen (der einen absoluten Lageistwert liefert), müssen referenziert werden.

Geschwindigkeitsgeregelte oder nur endlosdrehende lagegeregelte Spindeln müssen nicht referenziert werden.

Für folgende Achstypen (P-AXIS-00018) ist eine Referenzpunktfahrt (RPF) möglich:

- Linearachsen
- Rundachsen
- Spindeln

## **Parametrierung**

Die Referenzpunktfahrt muss für jede Achse in der Achsparameterliste parametriert werden.

Weitere Informationen hierzu sind im Kapitel Parametrierung [▶ 36] zu finden.

#### **Programmierung**

Die Referenzpunktfahrt wird entweder über den NC-Befehl G74 beauftragt oder durch den Start der Betriebsart 'Referenzpunktfahrt'.

# Obligatorischer Hinweis zu Verweisen auf andere Dokumente

Zwecks Übersichtlichkeit wird eine verkürzte Darstellung der Verweise (Links) auf andere Dokumente bzw. Parameter gewählt, z.B. [PROG] für Programmieranleitung oder P-AXIS-00001 für einen Achsparameter.

Technisch bedingt funktionieren diese Verweise nur in der Online-Hilfe (HTML5, CHM), allerdings nicht in PDF-Dateien, da PDF keine dokumentenübergreifenden Verlinkungen unterstützt.

Referenzpunktfahrt Seite 5 / 71



# 2 Beschreibung

# Aufgabe der Referenzpunktfahrt

Das Lageistwertsystem einer Maschinenachse wird beim Referenzieren mit der Maschinengeometrie synchronisiert.

Referenzieren bedeutet: Den Zeitpunkt der Initialisierung der Achse mit dem gewünschten Achskoordinatensystem zu synchronisieren.

Als Referenzpunktfahrt bezeichnet man den gesamten Vorgang inklusive Referenzieren bis zum Stillstand der Achse.



#### **Achtung**

Erst nach erfolgreichem Referenzieren werden die Achsen bezüglich ihrer Software-Endschalterpositionen überwacht.



#### **Hinweis**

Die Referenzpunktfahrt wird immer mit dem linearen Slope-Geschwindigkeitsprofil durchgeführt.



# **Hinweis**

#### Achsposition nach Referenzpunktfahrt

Die Achse steht nach erfolgter Referenzpunktfahrt nicht auf ihrem Referenzpunkt. Ursache hierfür ist, dass beim Auftreten des Nocken-/Nullimpulssignals die Referenzposition übernommen und die Achse danach abgebremst wird. Die Achse steht also am Ende der Referenzpunktfahrt um den Bremsweg neben der Referenzposition.

#### Absolutmesssystem oder inkrementelles Messsystem

Maschinenachsen, die mit einem Absolutmesssystem ausgestattet sind, welches im gesamten Verfahrbereich des Antriebs eine eindeutige Achs- bzw. Schlittenposition liefert, müssen nicht referenziert werden. Dies kann über den Achsparameter P-AXIS-00014 (abs\_pos-\_gueltig) eingestellt werden.



#### **Achtung**

Für inkrementelle Messsysteme ist eine Referenzpunktfahrt erforderlich. Dazu muss der Achsparameter P-AXIS-00014 (abs\_pos\_gueltig) = 0 gesetzt werden. Die dann erforderliche Referenzpunktfahrt ist nachfolgend näher beschrieben.

Referenzpunktfahrt Seite 6 / 71

#### Strategien beim Referenzieren

Mit der Steuerung können folgende Strategien zum Referenzieren einer Achse durchgeführt werden:

- · Referenzpunktfahrt mit Referenznocken, Referenzieren mit Nullimpuls
- · Referenzpunktfahrt mit Referenznocken, Referenzieren mit Nocken (ohne Nullimpuls)
- Referenzieren (ohne Referenznocken) mit Nullimpuls
- Referenzpunktfahrt mit schnellem oder langsamem Reversieren

#### Referenznocken

Mit dem Referenznocken wird eine Vorpositionierung vorgenommen und anschließend mit dem Nullimpuls vom Geber exakt referenziert. Ob die Achse auf oder neben dem Nocken steht, wird durch einen Nockenschalter ermittelt.

Es ist auch eine Referenzierung mit Nocken ohne Nullimpuls möglich. Dies ist z.B. bei Schrittmotoren neben dem Referenzieren mit "Fahren auf Festanschlag" eine gängige Methode.

#### Wiederholgenauigkeit beim Referenzieren

Abhängig von der Referenzpunktfahrtstrategie und eingesetzter Hardware wird entweder durch das Nockensignal oder den Nullimpuls ein Latchen der Achsposition vorgenommen; somit ist ein geschwindigkeitsunabhängiges exaktes Referenzieren möglich.

Unterstützt die eingesetzte Hardware dies nicht, so hängt die Genauigkeit einer Referenzpunktfahrt entscheidend von der Geschwindigkeit ab, mit der auf den Nocken gefahren wird.

Die maximale Toleranz ergibt sich bei gewählter Referenzpunktfahrtgeschwindigkeit durch die Abtastzeit der Funktionalität, welche die Positions- und Nockenerfassung durchführt.

Z.B. ergibt sich bei einer Referenzpunktfahrtgeschwindigkeit von 6 m/min und einem Abtastraster von 2ms eine maximale Abweichung von 200 μm.

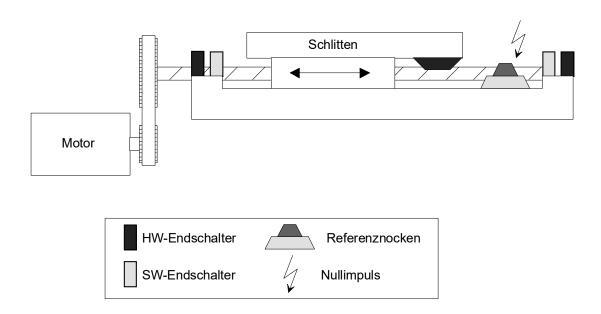



Abb. 1: Prinzipielle Anordnung der Endschalter und des Referenznockens einer Maschinenachse

Referenzpunktfahrt Seite 7 / 71



# **Nullimpuls-Geber**

Nach dem Vorpositionieren mit einem Referenznocken kann mit einem Nullimpuls-Geber sehr genau referenziert werden, wenn die Hardware ein Latchen des Zählerstandes beim Eintreffen des Nullimpulses unterstützt. Die Wiederholgenauigkeit des Referenzierens ist in diesem Fall unabhängig von der Referenzpunktfahrtgeschwindigkeit. Referenzieren allein mit einem Impuls, der im Fahrbereich nur einmal und somit eindeutig auftreten kann, ist ebenfalls möglich. Dies wird häufig bei rotatorischen Achsen eingesetzt.



# **Hinweis**

## Montage des Nullimpuls-Gebers

Das Suchen des Nullimpulses wird vom NC-Kern nur bei betätigtem Referenznocken aktiviert. Der Geber sollte deshalb so montiert sein, dass der Nullimpuls etwa eine halbe Geberumdrehung nach Betätigung des Nockens eintritt. Damit ist ein reproduzierbares Referenzieren gegeben.

Fällt der Nullimpuls mit dem Nocken zusammen, so wird abhängig davon ob der Referenzschalter vor oder nach dem Auftreten des Nullimpulses betätigt wird, der Nullimpuls entweder erkannt oder nicht. Die Referenzierung der Achse kann damit um eine Geberumdrehung verschoben werden.

Referenzpunktfahrt Seite 8 / 71



# 2.1 Schnittstellen der Referenzpunktfahrt

Die Abbildung zeigt die NC-Steuerung mit ihren für die Referenzpunktfahrt relevanten Schnittstellen. In den einzelnen Kanälen kann die Referenzpunktfahrt für die zugeordneten Achsen entweder in der

- Betriebsart "Referenzpunktfahrt" oder mit dem
- NC-Befehl G74 im NC-Programm

beauftragt werden. Die Referenzpunktfahrt wird für jede einzelne NC-Achse in der Achsparameterliste parametriert.

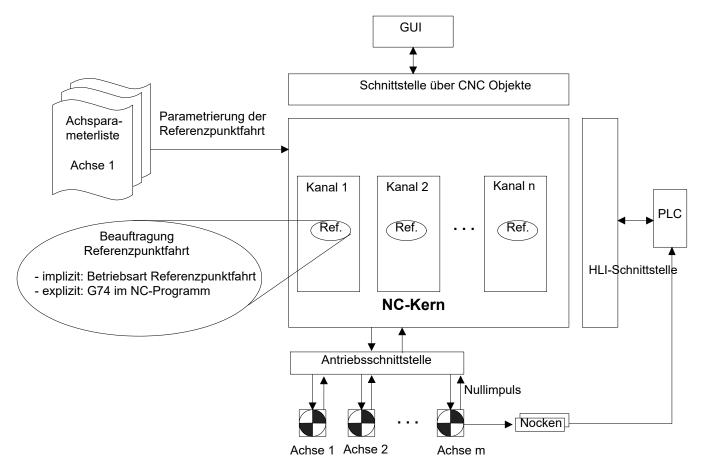



Abb. 2: NC-Steuerung Übersicht

#### **CNC-Schnittstelle**

Bezüglich der Referenzpunktfahrt besitzt die CNC eine Objektschnittstelle mit denen

- von der GUI die Referenzpunktfahrt beauftragt und
- von der Steuerung der Achsstatus abgefragt werden kann.

Referenzpunktfahrt Seite 9 / 71



#### **HLI-Schnittstelle**

Die HLI-Schnittstelle ist eine speichergekoppelte Schnittstelle, mit der die NC-Steuerung mit der PLC kommuniziert. Diese Schnittstelle ist in [HLI] ausführlich dokumentiert. Über die HLI-Schnittstelle kann:

- · die Referenzpunktfahrt beauftragt und
- · der Achsstatus abgefragt werden.

Das Nockensignal wird der NC über die HLI-Schnittstelle bereitgestellt. Das Einlesen des Nockensignals von der Peripherie und das Schreiben des Signals in die HLI-Schnittstelle ist in der SPS zu realisieren (siehe auch [HLI]).

## **Antriebsschnittstelle**

Mit der Antriebsschnittstelle können NC-Achsen mit verschiedenen Antriebstypen an die Steuerung angeschlossen werden.

Referenzpunktfahrt Seite 10 / 71



# 2.2 Beauftragung und Durchführung

Die Referenzpunktfahrt wird entweder um die Betriebsart "Referenzpunktfahrt" oder durch den NC-Befehl **G74** kanalspezifisch beauftragt. Dieser Befehl kann entweder in einem Handsatz oder in einem NC-Programm ausgeführt werden.

Beim Referenzieren übernimmt die Achse die Referenzposition P-AXIS-00152 (pos\_refpkt) aus der Achsparameterliste und hält an.

#### **NC-Programm**

Die Referenzpunktfahrt wird entweder gestartet:

- **implizit** in der Betriebsart Referenzpunktfahrt mit dem Standardreferenzpunktfahrt-Programm rpf.nc oder
- **explizit** mit einem beliebigen NC-Programm, dass in der Betriebsart 'Automatik' gestartet oder mit einem Handsatz, der in der Betriebsart MDI ausgeführt wird.

# Referenzpunktfahrt-Reihenfolge der Achsen

Mit dem NC-Befehl G74 können die zu referenzierenden Achsen und die Reihenfolge, in der die Achsen die Referenzpunktfahrt durchführen sollen, angegeben werden. Es ist eine

- sequentielle und eine
- parallele Beauftragung der Achsen möglich.

Die mit den Achsnamen programmierten Werte legen die Referenzpunktfahrt-Reihenfolge fest. Für Achsen mit dem gleichen Wert wird die Referenzpunktfahrt gleichzeitig angestoßen (siehe auch [PROG]).



# **Programmierbeispiel**

#### Sequentielle Beauftragung

Im folgenden Beispiel werden die Achsen Z, X, Y, A, und B nacheinander beauftragt; d.h. Z hat referenziert, bevor X mit der Referenzpunktfahrt beginnt usw.

```
...
N10 G74 Z1 X2 Y3 A4 B5
...
```

Dieser Modus kann z.B. erforderlich sein, um die Werkzeugachse Z zunächst aus dem Kollisionsbereich mit dem Werkstück bzw. anderen Achsen zu fahren. Danach werden die anderen Achsen referenziert.

Referenzpunktfahrt Seite 11 / 71



# **Programmierbeispiel**

#### Parallele Beauftragung

Im folgenden Beispiel erfolgt für die Achsen X, Y A und B die Referenzpunktfahrt parallel (gleichzeitig).

```
...
N10 G74 X1 Y1 A1 B1
...
```

Dieser Modus bietet sich wegen des geringeren Zeitbedarfs bei niedrigen Referenzverfahrgeschwindigkeiten und großem Verfahrbereich der Achse an.

Ein anderer Grund können kinematischen Achskopplungen sein, die eine sequentielle Referenzpunktfahrt nicht zulassen.



## **Programmierbeispiel**

### NC-Programm zum Referenzieren

Im folgenden Beispiel wird zuerst die Z-Achse referenziert und auf Sicherheitshöhe gefahren. Danach werden im nächsten NC-Satz die Achsen X und Y parallel beauftragt und anschließend die Achsen A und B ebenfalls parallel beauftragt. Zuletzt wird die Spindel S referenziert.

```
%RPF.NC
N10 G74 Z1
(optional: Z auf Sicherheitshöhe fahren)
N15 G01 G90 Z200 F500
N20 G74 X1 Y1 A2 B2 S3
...
(optional: Achsen auf Home-Position fahren)
N30 G01 X0 Y20 Z0 A90 F1000
N40 SPOS0 S500
...
N40 M30
```

Nach erfolgter Referenzpunktfahrt kann optional eine Positionierung der Achsen durch einen Verfahrbefehl auf eine beliebige Position innerhalb der Software-Endschalter erfolgen. Weiterhin sind hier auch beliebige Initialisierungen möglich.

# Antriebsgeführtes Referenzieren

Unter antriebsgeführtem Referenzieren wird die selbstständige Durchführung der Referenzpunktfahrt durch den Antrieb bezeichnet. Die NC-Steuerung beauftragt den Antrieb seine Achse zu referenzieren und erhält nach erfolgter Referenzpunktfahrt eine Bestätigung vom Antrieb, ob das Referenzieren erfolgreich durchgeführt wurde.

Die Parametrierung der Referenzpunktfahrt erfolgt ausschließlich im Antrieb.

Die CNC unterstützt das antriebsgeführte Referenzieren von Antrieben mit SERCOS-Interface.

Referenzpunktfahrt Seite 12 / 71



#### **Hinweis**

Außer P-AXIS-00014 gelten alle Referenzpunktfahrt-Parameter in der Achsparameterliste nur für das NC-geführte Referenzieren.

#### NC-geführtes Referenzieren

Beim NC-geführten Referenzieren wird der gesamte Ablauf der Referenzpunktfahrt von der NC-Steuerung bestimmt. Mit den Referenzpunktfahrt-Parametern in der Achsparameterliste kann die Referenzpunktfahrt für jede Achse parametriert werden. Abhängig von der gewählten Referenzpunktfahrtstrategie muss eventuell das Referenznockensignal auf dem HLI bereitgestellt werden.

#### Unterstützte Antriebstypen

Das NC-geführte Referenzieren wird für folgende Antriebstypen unterstützt:

- · Antriebssimulation (durch digitalen Filter)
- Profidrive
- Terminal (+/-10V Antriebe mit Inkrementalgebern, transparenter Zugriff über Feldbusse)
- · Lightbus
- Echtzeit Ethernet



#### **Hinweis**

Zur Zeit wird das NC-geführte Referenzieren bei Antrieben mit SERCOS Interface nur ohne Nullimpulssuche unterstützt.

#### **Antriebssimulation**

Die NC-Steuerung unterstützt den Antriebstyp "Simulation", d.h. wenn z.B. im Rahmen der Maschineninbetriebnahme noch kein physikalischer Antrieb (±10V, Schrittmotor,...) vorhanden ist oder die Steuerung komplett ohne physikalische Antriebe getestet werden soll, so kann jede Achse simuliert werden.

Auch bei diesem Antriebstyp kann eine Referenzpunktfahrt angewählt werden. Das Referenzieren dieser Achsen wird simuliert und kann durch entsprechende Parameter in der Achsparameterliste eingestellt werden.

#### Gantrykopplung

Bei Gantrykopplung kann die Referenzpunktfahrt der Gantry-Slaveachse mit dem Parameter P-AXIS-00074 unterdrückt werden. Die Referenzposition wird dann nach erfolgter Referenzpunktfahrt von der Gantry-Masterachse übernommen und die Überwachung der Gantrydifferenz zwischen Master- und Slaveachsen gestartet.

Im anderen Fall wird nach dem Referenzieren der Masterachse auch für die Gantry–Slaveachsen eine Referenzpunktfahrt ausgeführt. In beiden Fällen wird die jeweils andere mechanisch angekoppelte Achse mitgeführt.

Referenzpunktfahrt Seite 13 / 71



# 2.3 Ablaufstrategien der Referenzpunktfahrt

Der Ablauf der Referenzpunktfahrt einer Maschinenachse ist von unterschiedlichen Faktoren abhängig, wie z.B.:

- · Ist ein Referenznocken vorhanden?
- · Wird ein Nullimpuls-Signal ausgelöst?
- Soll der Referenznocken mit Nockenspiel angefahren werden?

Die verschiedenen Ablaufstrategien der Referenzpunktfahrt werden in die folgenden Verfahren unterteilt und anschließend genauer betrachtet:

- · Standard Referenzpunktfahrt
- Fliegende Referenzpunktfahrt für Spindeln
- · Spezielle Referenzpunktfahrtverfahren

#### Standard Referenzpunktfahrt

Für die Standard Referenzpunktfahrt wird vorausgesetzt, dass ein Referenznockenschalter vorhanden ist und der Positionszähler durch ein Nocken- oder Nullimpulssignal gelatcht werden kann.

Der zeitliche Ablauf der Standard-Referenzpunktfahrt läuft in der Regel in 3 Phasen ab:

- Phase 1: Fahren auf den Referenznocken
- · Phase 2: Fahren vom Referenznocken
- Phase 3: Fahren auf den Referenznocken mit Referenzieren

Die 3-phasige Standard Referenzpunktfahrt enthält 2 Richtungswechsel. Die Verfahrbewegungen können mit 2 unterschiedlichen Geschwindigkeiten parametriert werden.

Bei Varianten dieser Referenzpunktfahrt können einzelne Phasen übersprungen werden. Dabei kann sich die Referenzpunktfahrt bis auf eine Phase reduzieren. In diesem Fall wird dann kein Richtungswechsel durchgeführt.

#### Fliegende Referenzpunktfahrt für Spindelachsen

Die fliegende Referenzpunktfahrt ist nur für Spindelachsen verfügbar. Zum Richten einer Spindelachse, d.h. positionieren mit M19, muss die Spindelachse referenziert sein.

Wenn die Spindelachse noch nicht referenziert ist bzw. wenn der Referenzpunkt verloren wurde, führt die Spindelachse automatisch eine Referenzpunktfahrt durch. Diese fliegende Referenzpunktfahrt erfolgt bei drehender Spindelachse ohne Stillstand.

#### Spezielle Referenzpunktfahrtverfahren

In besonderen Fällen kann die Standard Referenzpunkfahrt nicht angewendet werden. Die folgenden speziellen Referenzpunktfahrtverfahren zeigen weitere Möglichkeiten auf, wie nach entsprechender Parametrierung eine Achse referenziert werden kann:

- Referenzieren bei der Fahrt vom Nocken
- Referenzieren ohne Reversieren
- · Referenzieren nur mit Nullimpuls, ohne Referenznocken
- Referenzieren in Richtung des gültigen Verfahrbereichs durch Umkehrung der Referenzrichtung und Umkehrung des Nocken-Signalpegels
- · Referenzieren durch Fahren auf Festanschlag

Referenzpunktfahrt Seite 14 / 71



# 2.3.1 Standard Referenzpunktfahrt

Die Standard-Referenzpunktfahrt ist das in der Praxis gebräuchlichste Verfahren zum Referenzieren von Maschinenachsen.

#### Voraussetzung

- Die Standard-Referenzpunktfahrt setzt voraus, dass ein Referenznocken vorhanden ist.
- Die Standard-Referenzpunktfahrt führt das Nockenspiel der Maschinenachse durch.
- Für hohe Referenziergenauigkeit ist im allgemeinen eine Zählerhardware mit Latcheingang erforderlich.

| Parametrierung | P-AXIS-00156 (ref_ohne_nocken) | 0 , mit Referenznocken |
|----------------|--------------------------------|------------------------|
|                | P-AXIS-00157 (ref_ohne_rev)    | 0 , mit Nockenspiel    |

#### **Zeitlicher Ablauf**

Der zeitliche Ablauf der Standard-Referenzpunktfahrt läuft in maximal 3 Phasen ab:

- Phase 1: Fahren auf den Referenznocken
- · Phase 2: Fahren vom Referenznocken
- Phase 3: Fahren auf den Referenznocken mit Referenzieren

Die Abbildungen unten zeigen den Ablauf der Standard-Referenzpunktfahrt.

#### **Nullimpuls**

Beim Referenzieren mit Nullimpuls führt mit entsprechender Hardwareunterstützung das Eintreffen des Nullimpulses bei vorheriger Aktivierung des entsprechenden Strobe-Eingangs zum unmittelbaren Latchen des Zählerstandes. Somit hat die Verfahrgeschwindigkeit beim Referenzieren mit Auswertung des Nullimpulses keinen Einfluss auf die Referenziergenauigkeit.

Ein Nullimpuls ist für die Standard-Referenzpunktfahrt nicht zwingend notwendig. Die Auswertung des Nullimpulses erfolgt in Phase 3 während des Referenzierens, bei betätigtem Referenznockenschalter.

Das Referenzieren ausschließlich mit Referenznocken ohne Nullimpuls vermindert die Referenziergenauigkeit abhängig von der Verfahrgeschwindigkeit. Das Referenzieren ohne Nullimpuls ist in Abbildung 2-3 dargestellt.



#### **Hinweis**

In den folgenden Geschwindigkeits-Weg-Diagrammen sind die Beschleunigungs- und Verzögerungsphasen vereinfacht als lineare Geraden dargestellt.

Referenzpunktfahrt Seite 15 / 71

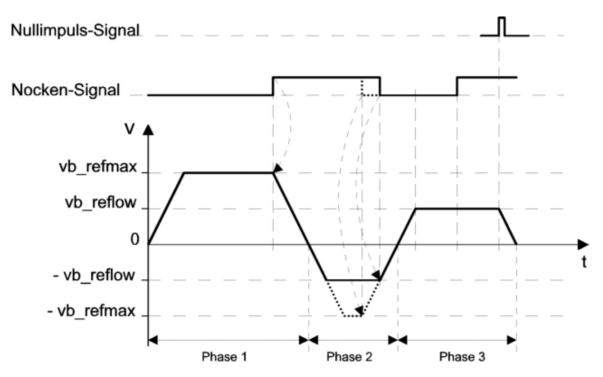



Abb. 3: Standard-Referenzpunktfahrt im Zeitbereich

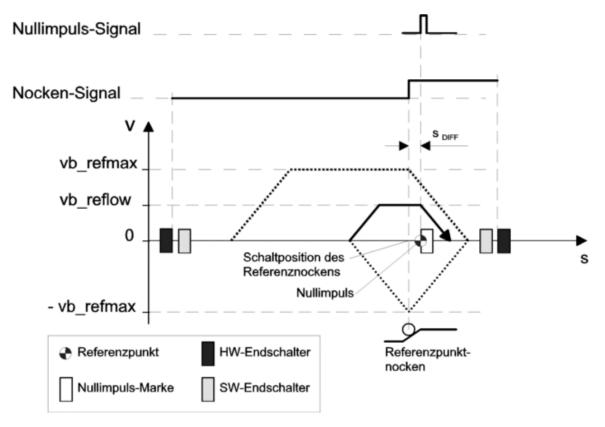



Abb. 4: Standard-Referenzpunktfahrt

Referenzpunktfahrt Seite 16 / 71

#### 2.3.1.1 Phase 1: Fahren auf den Referenznocken

| Parametrierung der<br>Phase 1 | P-AXIS-00158 (ref_richt) | Referenzierrichtung                 |
|-------------------------------|--------------------------|-------------------------------------|
|                               | P-AXIS-00219 (vb_refmax) | Schnelle Referenziergeschwindigkeit |

#### Start der Phase 1

Die Referenzpunktfahrt wird gestartet durch den NC-Befehl G74 oder durch den Start der Betriebsart Referenzpunktfahrt. Die Maschinenachse befindet sich im Stillstand und es erfolgt eine Vorbereitung der Referenzpunktfahrt.

Ausgangspunkt für die Phase 1 können 2 Situationen sein:

- · Achse steht vor dem Nocken
- · Achse steht auf dem Nocken

#### Achse steht vor dem Nocken

Die Maschinenachse beschleunigt auf die schnelle Referenzgeschwindigkeit P-AXIS-00219 (vb\_refmax) in die Referenzrichtung P-AXIS-00158 (ref\_richt). Über die HLI-Schnittstelle wird das Erreichen des Referenznockens der CNC-Steuerung mitgeteilt, worauf die Maschinenachse bis auf Stillstand abgebremst wird.

Die Phase 1 ist beendet und es wird mit der Phase 2 fortgesetzt.



# **Hinweis**

#### Achse steht auf dem Nocken

Wenn beim Start der Referenzpunktfahrt der Referenznocken bereits betätigt ist, wird die Phase 1 nicht ausgeführt. Die Maschinenachse bleibt auf ihrer Ausgangslage stehen.

Die Phase 1 ist beendet und es wird mit der Phase 2 fortgesetzt.

Referenzpunktfahrt Seite 17 / 71

# 2.3.1.2 Phase 2: Fahren vom Referenznocken

| Parametrierung der<br>Phase 2 | P-AXIS-00064 (fast_from_cam) | Langsames oder schnelles Fahren vom Referenznocken. |
|-------------------------------|------------------------------|-----------------------------------------------------|
|                               | P-AXIS-00158 (ref_richt)     | Referenzierrichtung                                 |
|                               | P-AXIS-00219 (vb_refmax)     | Schnelle Referenziergeschwindigkeit                 |
|                               | P-AXIS-00218 (vb_reflow)     | Langsame Referenziergeschwindigkeit                 |

#### Start der Phase 2

Die Phase 2 wird automatisch gestartet, wenn Phase 1 erfolgreich beendet wurde und die Maschinenachse auf dem Referenznocken steht.

# Durchführung der Phase 2

Die Maschinenachse beschleunigt auf die parametrierte Referenzgeschwindigkeit und fährt entgegen der Referenzrichtung P-AXIS-00158 (ref\_richt) vom Referenznocken. Das Verlassen des Referenznockens wird der CNC-Steuerung mitgeteilt, worauf die Maschinenachse bis zum Stillstand abgebremst wird. Ob in der Phase 2 mit der langsamen oder schnellen Referenziergeschwindigkeit verfahren wird, wird durch den Parameter P-AXIS-00064 (fast\_from\_cam) festgelegt.

Die Phase 2 ist beendet und es wird mit der Phase 3 fortgefahren.

Referenzpunktfahrt Seite 18 / 71

# 2.3.1.3 Phase 3: Fahren auf den Referenznocken mit Referenzieren

| Parametrierung der<br>Phase 3 | P-AXIS-00084<br>(homing_without_zero_pulse) | Mit oder ohne Nullimpuls                              |
|-------------------------------|---------------------------------------------|-------------------------------------------------------|
|                               | P-AXIS-00158 (ref_richt)                    | Referenzierrichtung                                   |
|                               | P-AXIS-00218 (vb_reflow)                    | Langsame Referenziergeschwindigkeit z.B. 15000 [µm/s] |

#### Start der Phase 3

Die Phase 3 wird automatisch gestartet, wenn Phase 2 erfolgreich beendet wurde und die Maschinenachse nicht mehr auf dem Referenznocken steht.

Die Suche der Referenzposition kann erfolgen durch:

- den Nullimpuls oder
- den Referenznocken.

# Referenzieren mit Nullimpuls

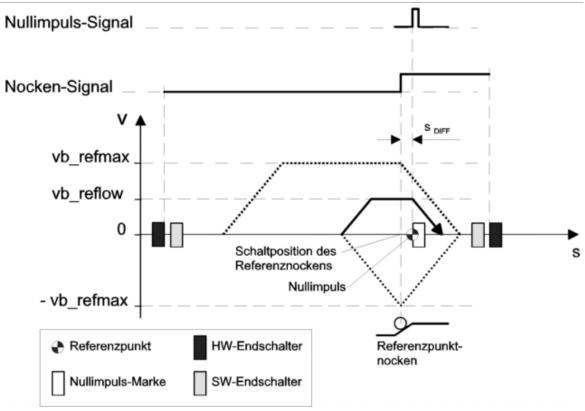



Abb. 5: Referenzpunktfahrt in 3 Phasen, Referenzieren auf den Referenznocken mit Nullimpuls

Referenzpunktfahrt Seite 19 / 71

#### Referenzieren mit Referenznocken

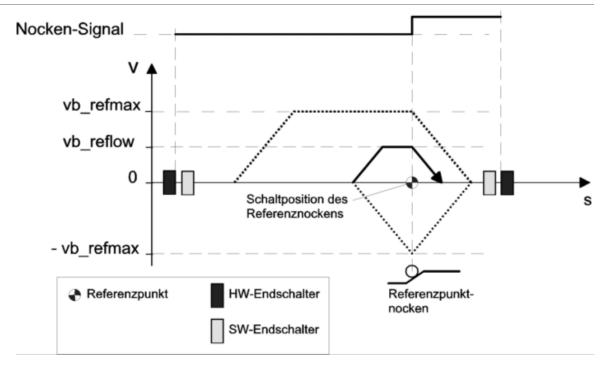



Abb. 6: Referenzpunktfahrt in 3 Phasen, Referenzieren auf den Referenznocken ohne Nullimpuls



#### **Hinweis**

Bei dieser Parametrierung erfolgt das Referenzieren bei der positiven Flanke des Nockensignals in der 3. Phase, also bei der Fahrt auf den Nocken.

Das Referenzieren erfolgt durch die Betätigung des Nockenschalters in der 3. Phase der Referenzpunktfahrt. Die Genauigkeit des Referenzierens ist bei diesem Verfahren festgelegt durch die Achsgeschwindigkeit (vb\_reflow) in Phase 3 und durch die Abtastzeit, da die Positionsübernahme nur zu diskreten Zeitpunkten erfolgt und der Positionswert nicht wie bei der Nullimpulsauswertung gelatcht wird.

Dieses Verfahren findet z.B. Anwendung bei Schrittmotorapplikationen ohne Inkrementalgeber. Eine meist ausreichende Genauigkeit kann hier erreicht werden, wenn P-AXIS-00218 (vb\_reflow) so initialisiert wird, dass sich der Motor in der 3. Phase mit einem Inkrement pro Abtastzyklus bewegt.

Dieses Verfahren kommt auch bei "trennbaren" Antrieben (Zahnstange, Ritzel) zum Einsatz, bei denen das Nullimpulssignal normalerweise nicht verwendet wird.

Referenzpunktfahrt Seite 20 / 71

# 2.3.2 Fliegende Referenzpunktfahrt für Spindelachsen

#### **Beschreibung**

Zur Festlegung der Referenzpunktfahrtstrategie werden die Parameter P-AXIS-00157 (ref\_ohne\_rev) und P-AXIS-00156 (ref\_ohne\_ nocken) verwendet.

- "ref ohne rev" definiert, ob ein Nockenspiel der Achse stattfinden soll.
- "ref\_ohne\_nocken" legt fest, ob bei der Referenzpunktfahrt nur das Nullimpulssignal oder auch das Nockensignal ausgewertet wird.

Die konventionelle Referenzpunktfahrt wird ausgeführt, wenn sowohl "ref\_ohne\_rev" als auch "ref\_ohne\_nocken" auf FALSE gesetzt werden.

Die Kombination, dass "ref\_ohne\_rev" auf FALSE und "ref\_ohne\_nocken" auf TRUE gesetzt wird, ist unsinnig, da für das Nockenspiel die Auswertung des Nockensignals notwendig ist.

Zur Ausführung einer fliegenden Referenzpunktfahrt ohne Reversieren aus dem Endlosdrehen ist die Variable "ref\_ohne\_rev" auf TRUE zu setzen. Die folgende Tabelle zeigt die Einstellungen für die verschiedenen RPF-Typen.

| ref_ohne_rev = FALSE    | ref_ohne_rev = TRUE     |                           |
|-------------------------|-------------------------|---------------------------|
| ref_ohne_nocken = FALSE | konventionelle RPF      | fliegende RPF mit Nocken  |
| ref_ohne_nocken = TRUE  | unzulässige Einstellung | fliegende RPF ohne Nocken |

Bei konventionellen Achsen und Simulationsachsen wird die Lageregelung bei der RPF automatisch eingeschaltet, wenn diese vor der RPF ausgeschaltet war.

Für jede Getriebestufe existiert eine spezifische Referenzpunktposition, die im Achsmaschinendatensatz angegeben wird.

Die CNC führt generell vor dem Richten der Spindelachse (M19, Getriebeschaltposition bzw. Achsposition anfahren) automatisch eine Referenzpunktfahrt durch, wenn der Referenzpunkt nicht (mehr) gültig ist. Z.B. bei Überschreitung der maximalen Geberfrequenz durch zu hohe Drehzahl. Aus dem Endlosdrehen kann dies jedoch nur durchgeführt werden, wenn der Parameter "ref\_ohne\_rev" auf TRUE gesetzt ist. Ansonsten erfolgt die Ausgabe einer Fehlermeldung und der Übergang in den Fehlerzustand.



# Hinweis

Beim antriebsgeführten Referenzieren von SERCOS-Antrieben muss der Mechanismus der automatischen RPF unterdrückt werden. Dazu ist im Achsmaschinendatensatz im Achsmodus (P-AXIS-00015) das Bit ACHSMODE\_KEINE\_AUTO\_RPF zu setzen.

Referenzpunktfahrt Seite 21 / 71

# 2.3.2.1 Referenzpunktfahrt ohne Reversieren

# Referenzpunktfahrt ohne Reversieren

Bei der RPF ohne Reversieren erfolgt bei Stillstand der Spindel ein Beschleunigen auf die Drehzahl P-AXIS-00218 (vb\_reflow) aus dem Achsmaschinendatensatz. Die Spindel wird nicht an der Stromgrenze, sondern mit den Standard-Rampen beschleunigt. Die Drehrichtung wird mit der RPF-Richtung P-AXIS-00158 (ref\_richt) initialisiert. Beim Initialisieren der Maschinendaten der Spindel wird bereits geprüft, ob eine Vorzugsrichtung für die Spindel vorgegeben ist. Stimmt diese nicht mit der angegebenen RPF-Richtung überein, so erfolgt die Ausgabe einer Fehlermeldung.

Wenn die Spindel eine RPF aus dem Endlosdrehen heraus durchzuführen hat, findet zunächst eine Beschleunigung bzw. Verzögerung auf die RPF-Drehzahl "vb\_reflow" statt, bevor referenziert wird. Die Richtung für das Referenzieren entspricht der des Endlosdrehens.

Das Richten der Spindel mit programmierter Drehzahl und mit Eilgangdrehzahl erfolgt nach einer RPF ohne Bewegungsstopp. Das heißt, es findet eine **fliegende Referenzpunktfahrt** statt. Die Positionierung erfolgt in die Richtung, in welche die RPF durchgeführt wurde, auch wenn diese nicht mit der vorgegebenen Drehrichtung übereinstimmt.

Eine Referenzpunktfahrt ohne Reversieren der Spindel kann grundsätzlich auf zwei Arten durchgeführt werden. Die Art wird durch den Wert (TRUE/FALSE) der Variablen P-AXIS-00156 (ref\_ohne\_nocken) des Achsmaschinendatensatzes festgelegt.

# Parametrierung ref\_ohne\_nocken 0

Einlesen des Nocken- und Nullimpulses

Zur Triggerung wird sowohl der Referenzpunktnocken, als auch der Nullimpuls verwendet.

Beim Referenzpunktnocken wird auf den 'nicht betätigt' - Flankenwechsel getriggert. D.h. falls der Nocken momentan betätigt ist, wird die Spindel so weit gedreht, bis der Nocken nicht betätigt ist.

#### Parametrierung ref ohne nocken 1

Zur Triggerung wird nur der Nullimpuls verwendet. Dieses Verfahren kann angewendet werden, wenn pro Spindelumdrehung nur ein Nullimpuls ausgelöst wird.

Referenzpunktfahrt Seite 22 / 71

# Spindelbetriebsarten (nicht SERCOS)

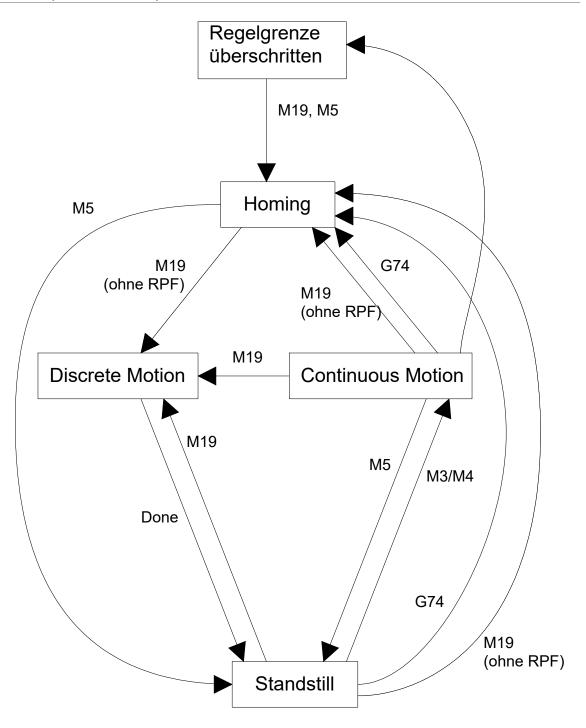



Abb. 7: Zustandsgraph der Spindelbetriebsarten

Referenzpunktfahrt Seite 23 / 71

## Referenzpunktfahrt mit SERCOS-Antrieben

Für SERCOS-Antriebe wird die antriebsgeführte Referenzpunktfahrt verwendet. Dies bedeutet, dass im Achsmaschinendatensatz der Spindel im Parameter "achs\_mode" das Bit ACHSMO-DE\_KEINE\_AUTO\_RPF zu setzen ist, um ein automatisches Referenzieren zu verhindern. Die Parameter "ref\_ohne\_rev" und "ref\_ohne\_nocken" werden dann nicht mehr ausgewertet.



# **Hinweis**

Bei einer Spindel mit SERCOS-Antrieb muss vor dem Richten explizit eine Referenzpunktfahrt durchgeführt worden sein (über das Automatik-Programm oder über einen Handsatz). Andernfalls wird eine Fehlermeldung ausgegeben.

#### Spindelbetriebsarten bei SERCOS

# **SERCOS**

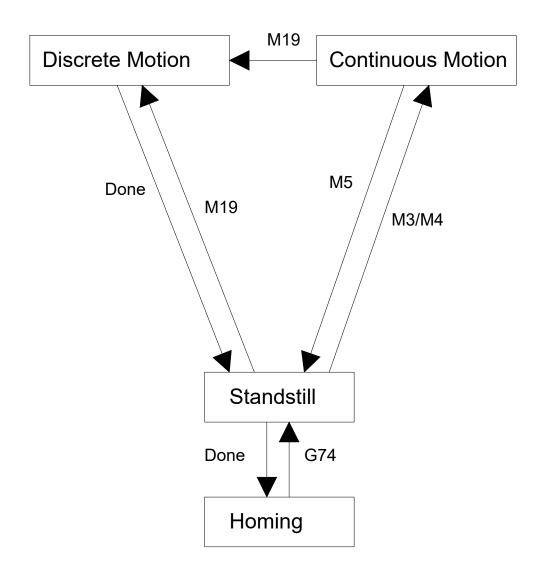



Abb. 8: Zustandsgraph der Spindelbetriebsarten für digitale Antriebe (z.B. SERCOS)

Referenzpunktfahrt Seite 24 / 71

# 2.3.3 Spezielle Referenzpunktfahrtverfahren

In besonderen Fällen kann die Standard-Referenzpunkfahrt nicht angewendet werden. Die folgenden speziellen Referenzpunktfahrtverfahren zeigen weitere Möglichkeiten auf, wie nach entsprechender Parametrierung eine Achse referenziert werden kann.

- Referenzieren bei der Fahrt vom Nocken
- · Referenzieren ohne Reversieren
- · Referenzieren nur mit Nullimpuls, ohne Referenznocken
- Referenzieren in Richtung des gültigen Verfahrbereichs durch Umkehrung der Referenzrichtung und Umkehrung des Nocken-Signalpegels
- · Referenzieren durch Fahren auf Festanschlag

#### 2.3.3.1 Referenzieren bei der Fahrt vom Nocken



#### Hinweis

Durch eine einfache Maßnahme, nämlich durch Invertieren der Verfahrrichtung beim Referenzieren (ref\_richt) und des Nockenschalter-Signalpegels (cam\_level) wird mit der fallenden Flanke referenziert. Vorausgesetzt der Nockenschalter ist beim Start der Referenzpunktfahrt betätigt, so handelt es sich hier um eine 3-phasige Referenzpunktfahrt.

Dieses Verfahren hat dann Vorteile, wenn beim oben vorgestellten Verfahren die Referenzposition außerhalb des entsprechenden Softwareendschalters liegen würde. Für o.a. Beispiel ergeben sich folgende Änderungen:

#### **Parametrierung**

P-AXIS-00038 (cam\_level) 0
P-AXIS-00158 (ref richt) 0



Abb. 9: Referenzieren bei der Fahrt vom Referenznocken (ohne Nullimpuls)

Referenzpunktfahrt Seite 25 / 71



# 2.3.3.2 Referenzpunktfahrt ohne Reversieren

#### Referenzieren in 1 Phase

Das Referenzieren in einer Phase erfolgt ohne Richtungswechsel.

Beispiele für translatorische Achsen



# **Achtung**

Das Referenzieren in einer Phase ist optional möglich, sollte aber in der Realität nicht verwendet werden. Dabei muss beachtet werden, dass beim Start der Referenzpunktfahrt die Achse nicht auf dem Referenznocken stehen darf.

Diese Prüfung ist von der PLC durchzuführen.

| Parametrierung | P-AXIS-00156<br>(ref_ohne_nocken)        | 0, Referenznocken vorhanden |
|----------------|------------------------------------------|-----------------------------|
|                | P-AXIS-00084 (homing_without_zero_pulse) | 0, mit Nullimpuls           |
|                | P-AXIS-00157 (ref_ohne_rev)              | 1, kein Reversieren         |

# Referenzieren mit Nullimpuls

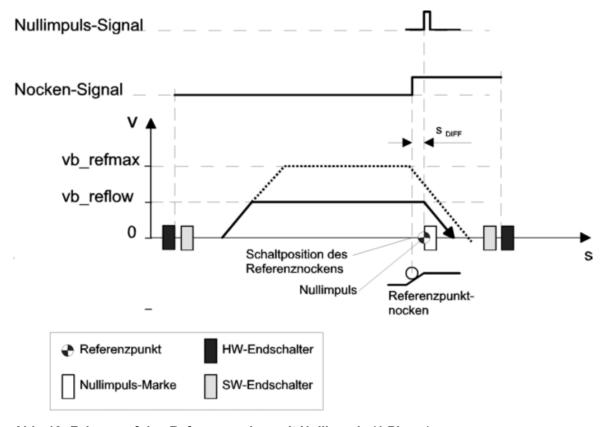



Abb. 10: Fahren auf den Referenznocken mit Nullimpuls (1 Phase)

Referenzpunktfahrt Seite 26 / 71

# Referenzieren ohne Nullimpuls

| Parametrierung | P-AXIS-00156<br>(ref_ohne_nocken)        | 0, Referenznocken vorhanden |
|----------------|------------------------------------------|-----------------------------|
|                | P-AXIS-00084 (homing_without_zero_pulse) | 1, kein Nullimpuls          |
|                | P-AXIS-00157 (ref_ohne_rev)              | 1, kein Reversieren         |

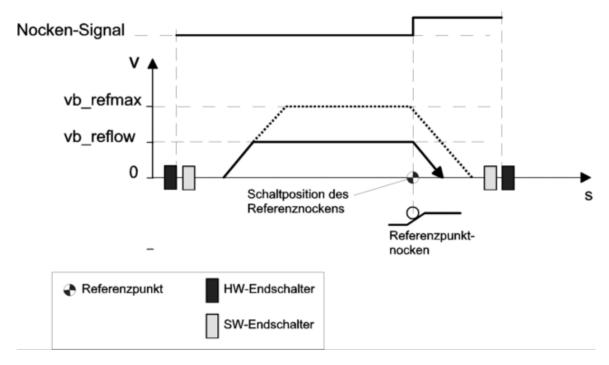



Abb. 11: Fahren auf den Referenznocken ohne Nullimpuls (1 Phase)

Referenzpunktfahrt Seite 27 / 71

# 2.3.3.3 Referenzieren mit Nullimpuls ohne Referenznocken

| Parametrierung | P-AXIS-00084<br>(homing_without_zero_pulse) | 0, mit Nullimpuls                   |
|----------------|---------------------------------------------|-------------------------------------|
|                | P-AXIS-00156<br>(ref_ohne_nocken)           | 1, ohne Referenznocken              |
|                | P-AXIS-00157<br>(ref_ohne_rev)              | 1, kein Reversieren                 |
|                | P-AXIS-00158 (ref_richt)                    | Referenzierrichtung                 |
|                | P-AXIS-00218<br>(vb_reflow)                 | langsame Referenziergeschwindigkeit |

#### **Ablauf**

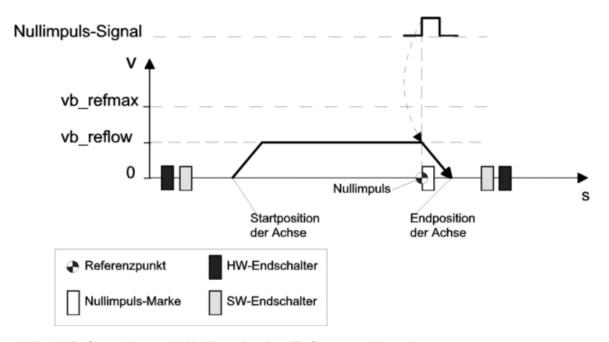



Abb. 12: Referenzieren mit Nullimpuls ohne Referenzpunktnocken

# 2.3.3.4 Referenzieren durch Fahren auf Festanschlag, NC-geführt

Damit diese Art der Referenzierung genutzt werden kann, muss der Achsparameter P-AXIS-00299 (kenngr.homing\_type) mit dem Wert **TORQ** parametriert werden.

Diese Art der Referenzierung ist für folgende Antriebsschnittstellen (s. P-AXIS-00020) implementiert:

| Wert   | Bedeutung                        |
|--------|----------------------------------|
| 0x0004 | Antriebssimulation               |
| 0x0009 | Generische Antriebsschnittstelle |

Referenzpunktfahrt Seite 28 / 71

Zur Festlegung, wie die Referenzpunktfahrt beim Fahren auf einen Festanschlag abläuft, sind weitere allgemeine Parameter mit Werten zu belegen. Sie sind in der Achsliste mit dem Präfix kenngr.homing. versehen, siehe Tabelle:

# Allgemeine Parameter für das Referenzieren auf Festanschlag

| Name                                      | Dimension | Wertebereich         | Beschreibung                                                                                                    |
|-------------------------------------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| torq_min_distance<br>(P-AXIS-00344)       | 0,1 μm    | < torq_max_distance  | Mindestweg bis zur Detektierung der Referenzposition                                                            |
| torq_max_distance<br>(P-AXIS-00345)       | 0,1 μm    | 0 MAX_SGN23          | Maximalweg bis zur Detektierung der Referenzposition                                                            |
| torq_homing_dir<br>(P-AXIS-00346)         |           | [POSITIVE, NEGATIVE] | Richtung der Referenzpunktfahrt                                                                                 |
| torq_detect_velocity_limit (P-AXIS-00347) | 0,1 %     | 0 1000               | Geschwindigkeitsgrenzwert zur<br>Detektierung der Referenzposition                                              |
| torq_retraction_distance (P-AXIS-00348)   | 0,1 μm    | MAX_SGN32            | Rückzugsweg nach erkennen der Referenzposition                                                                  |
| torq_homing_position<br>(P-AXIS-00349)    | 0,1 μm    | MAX_SGN32            | Referenzposition                                                                                                |
| torq_detect_time<br>(P-AXIS-00350)        | μs        | MAX_UNS32            | Mindestzeit, die das Grenzmo-<br>ment überschritten sein muss, da-<br>mit die Referenzposition erkannt<br>wird. |

Die Parameter, die von der Getriebestufe abhängen, sind mit dem Präfix **getriebe[X].homing.** versehen. Wobei für **X** eine Ordnungszahl für die jeweilige Getriebestufe eingetragen ist, siehe Tabelle:

# Getriebestufen-spezifische Parameter für das Referenzieren auf Festanschlag

| Name                                       | Dimension | Wertebereich | Beschreibung                                                                                             |
|--------------------------------------------|-----------|--------------|----------------------------------------------------------------------------------------------------------|
| torq_move_acceleration (P-AXIS-00334)      | mm/s²     | <= a_max     | Beschleunigung                                                                                           |
| torq_move_velocity<br>(P-AXIS-00333)       | μm/s      | <= vb_max    | Geschwindigkeit für Achsbewegung                                                                         |
| torq_move_torque_limit<br>(P-AXIS-00342)   | 0,1 %     | 0 1000       | Prozentualer Drehmomentgrenzwert für Bewegung.                                                           |
| torq_detect_torque_limit<br>(P-AXIS-00343) | 0,1 %     | 0 1000       | Grenzmoment für die Detektion der stehenden Achse. Prozentualer Wert bezogen auf torq_move_torque_limit. |

Referenzpunktfahrt Seite 29 / 71

Nachstehende Grafik zeigt, auf welche Weise die aufgeführten Parameter Einfluss beim Fahren auf Festanschlag besitzen.

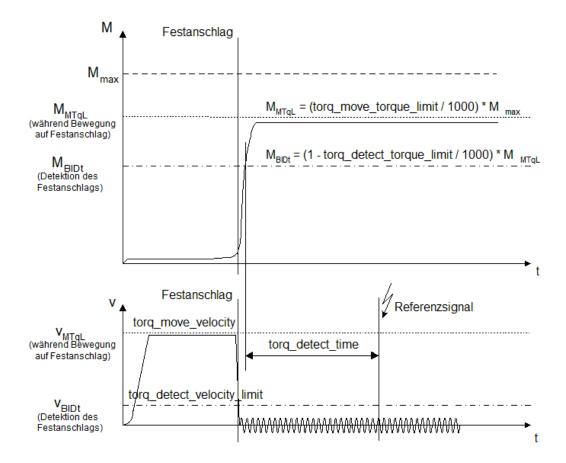



Abb. 13: Einfluss der Parameter beim Fahren auf Festanschlag

Referenzpunktfahrt Seite 30 / 71



# 2.4 Überwachungen während der Referenzpunktfahrt

# 2.4.1 Wegüberwachung

Durch den Parameter P-AXIS-00412 kann für Spindeln und rotatorische Achsen eine Wegüberwachung durchgeführt werden.

Dabei wird geprüft, ob die Referenzposition innerhalb eines mit P-AXIS-00412 parametrierbaren Abstandes von der Startposition der Referenzpunktfahrt gefunden wurde. Gemeint ist, ob z.B. der Referenznocken und/oder der Nullimpuls gefunden wurde.

# 2.5 Überwachungen nach der Referenzpunktfahrt

# 2.5.1 Referenzverlust (Referenzüberwachung)



#### **Hinweis**

Eine Referenzüberwachung ist aktuell nur für den Antriebstyp (siehe P-AXIS-00020) SERCOS möglich. Bei allen anderen Antriebstypen wird bei Aktivierung der Referenzüberwachung die Fehlermeldung P-ERR-110548 ausgegeben.

#### **Motivation**

In manchen Fällen ist es wünschenswert, zu prüfen, ob eine einmal referenziert Achse ihren Referenzbezug verloren hat.

Beispielsweise kann es bei der Verwendung von Absolutwertgebern, die interne Arbeitsdaten in einem batteriegepufferten Speicher ablegen, nach einigen Jahren dazu kommen, dass die Pufferbatterie leer ist, und damit der Absolutwertgeber eine falsche Position liefert.

Ebenso kann es bei der Parametrierung von Antriebsverstärkern beim Ändern von tiefgreifenden Parametern dazu kommen, dass eine bereits referenzierte Achse ihren Referenzbezug wieder verliert.

In beiden Fällen führt dies zu einer unerwarteten Verschiebung der vom Antrieb gelieferten Position gegenüber der mechanischen Achsposition, was zu einer Beschädigung der Maschine führen kann.

Um dies zu verhindern, wurde die Möglichkeit geschaffen zu prüfen, ob eine Achse ihren Referenzbezug verloren hat.

#### Wirkungsweise

Bei der Referenzüberwachung wird ein im Antriebsregler gebildetes Signal, das anzeigt, ob die jeweilige Achse referenziert ist, über die zyklischen Prozessdaten in die CNC übertragen. Dort wird geprüft, ob der erwartete Zustand dieses Signals korrekt ist. Dieses "Achse ist referenziert'-Signal wird im Weiteren als Referenzsignal bezeichnet.

Beispielsweise ist für einen Absolutwertgeber sofort nach Beginn der zyklischen Datenübertragung die Achse referenziert.

Bei einer Achse ohne Absolutwertgeber ist die Achse referenziert, sobald eine antriebsgeführte Referenzpunktfahrt erfolgreich abgeschlossen ist.

Die CNC-Steuerung hat die Möglichkeit, das vom Antrieb gelieferte Referenzsignal mit dem intern berechneten erwarteten Referenzsignal zu vergleichen und bei Abweichungen eine Fehlermeldung auszugeben.

Referenzpunktfahrt Seite 31 / 71



#### **Parametrierung**

Durch die Parametrierung wird im Wesentlichen die Übertragung des Referenzsignals vom Antrieb in die CNC festgelegt.

Hierzu ist im Achsparameter P-AXIS-00426 der Name des zyklischen Prozessdatums, der das Referenzsignal überträgt, anzugeben.

Wenn das Referenzsignal in einem der Echtzeitstatusbits des SERCOS-Statuswortes übertragen wird, ist in P-AXIS-00426 der Wert "S-0-0135" einzutragen. Das Signalstatuswort muss nicht explizit im den Eingangsprozessdaten konfiguriert werden, da es automatisch konfiguriert ist.

Falls der in P-AXIS-00426 konfigurierte Name nicht in den zyklischen Eingangsprozessdaten gefunden wurde, wird die Fehlermeldung P-ERR-70401 ausgegeben und die Referenzüberwachung deaktiviert.

#### Aktivierung/ Wirkung

Die Referenzprüfung wird aktiviert, sobald gültige Werte für die Achsparameter P-AXIS-00425 und P-AXIS-00426 konfiguriert wurden.

Bei aktiver Referenzprüfung wird die Fehlermeldung P-ERR-70400 ausgegeben, sobald die CNC eine Diskrepanz zwischen dem vom Antrieb gelieferten Referenzsignal und dem CNC-internen Referenzsignal erkennt.



#### **Beispiel**

#### Parametrierung Beispiel 1

Für einen SERCOS-Antrieb soll eine Referenzprüfung durchgeführt werden. Das Referenzsignal soll dabei über das Echtzeitstatusbit 1 übertragen werden.

#### Parametrierung im Antrieb:

Im Antrieb muss dem Echtzeitsteuerbit 1 das Referenzsignal zugewiesen werden. Dies geschieht, indem dem Antriebsparameter S-0-305 (Zuweisung Echtzeitstatusbit 1) der Wert S-0-403 (Status Lageistwert) zugewiesen wird.

#### Achsparameter:

Da das Referenzsignal aus dem Echtzeitstatusbit des Statuswortes gelesen wird, ist in P-AXIS-00426 der Wert "S-0-0135" einzutragen.

Im Statuswort ist das Echtzeitstatusbit 1 das Bit mit der Nummer 6 (von 0 an gezählt), daher ist in P-AXIS-00425 der Wert 6 einzutragen

antr.homing\_check.element\_name S-0-0135
antr.homing check.bit nr 6

Referenzpunktfahrt Seite 32 / 71





# **Beispiel**

## Parametrierung Beispiel 2

Für einen SERCOS-Antrieb soll eine Referenzprüfung durchgeführt werden. Das Referenzsignal soll dabei über Bit 2 des Antriebsparameters P-0-4078 übertragen werden.

#### Parametrierung im Antrieb:

In den zyklischen Prozessdaten des Antriebs muss der Parameter P-0-4078 konfiguriert werden.

#### Achsparameter:

Da das Referenzsignal aus P-0-4078 gelesen wird, ist in P-AXIS-00426 der Wert "P-0-4078" einzutragen.

In P-0-4078 ist das Referenzsignal das Bit mit der Nummer 2 (von 0 an gezählt), daher ist in P-AXIS-00425 der Wert 2 einzutragen

```
antr.sercos.at[1].ident_nr 36846
antr.sercos.at[1].ident_len 2
antr.sercos.at[1].nc_ref P-0-4078
antr.homing_check.element_name P-0-4078
antr.homing_check.bit_nr 2
```

Referenzpunktfahrt Seite 33 / 71

# 2.6 Verzögerte Aktivierung der Nullimpulslogik

#### **Aktivierung**

Im Parameter "kenngr.shift\_offset\_zero\_pulse\_activation" P-AXIS-00494 kann bei einer CNC-geführten Referenzpunktfahrt (s. P-AXIS-00299) ein Wegoffset angegeben werden, um den das Aktivieren der Nullimpulslogik nach Betätigen des Referenzschalters verzögert wird.

In der Grundeinstellung ist dieser Parameter 0. Die Nullimpulslogik wird sofort bei Betätigen des Referenzschalters scharfgeschaltet.

#### Wirkungsweise

Falls Referenzschalter und Nullimpuls sehr nahe beieinander liegen, kann dadurch die Detektion des Nullimpulses u.U. nicht mehr zuverlässig erfolgen, da je nach Auslöseschnelligkeit des Referenzschalters der nächste oder erst der übernächste Nullimpuls gefunden wird; siehe folgende Abbildung:

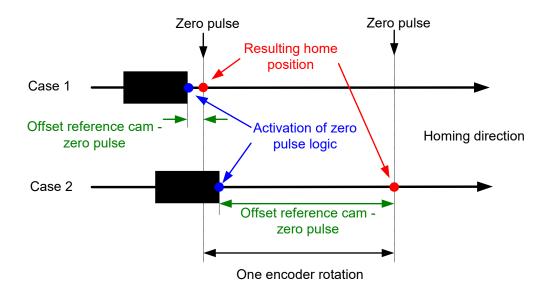



Abb. 14: Detektion des Nullimpulses erfolgt u.U. nicht zuverlässig

Durch Verschieben des Aktivierungszeitpunkts der Nullimpulslogik kann auch in diesem Fall sichergestellt werden, dass immer der gleiche Nullimpuls bei der Referenzpunktfahrt gefunden wird:

Referenzpunktfahrt Seite 34 / 71

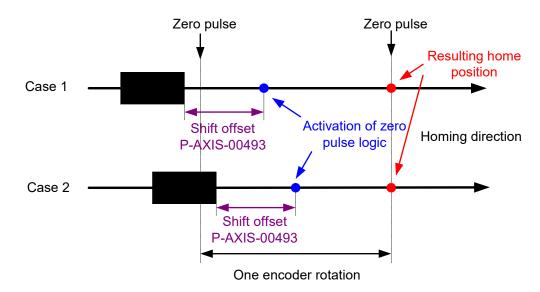



Abb. 15: Aktivierungszeitpunktverschiebung der Nullimpulslogik stellt gleichen Nullimpuls sicher



# Hinweis

Nach einer Referenzpunktfahrt kann der Positionsoffset zwischen Betätigen des Referenzschalters und Detektion des Nullimpulses über das CNC-Objekt "reference cam – zero pulse offset" ausgelesen werden:

- · Task Geo,
- Index-Group: 0x20300
- Index-Offset: 0x10000 \* (achs\_index + 1) + 0x11C

Beispiele

- 1. Achse -> Index-Offset 0x1011C
- 3. Achse -> Index-Offset 0x3011C

Referenzpunktfahrt Seite 35 / 71



# 3 Parametrierung

Die Referenzpunktfahrt wird achsspezifisch in der Achsparameterliste einer Achse parametriert. Diese gliedern sich entsprechend ihrer Aufgabe in:

- · Systemparameter und
- Ablaufparameter

#### Systemparameter

Mit den Systemparametern werden maschinenspezifische Einstellungen des Antriebssystems vorgenommen. Folgende Informationen werden mit diesen Parametern der Steuerung mitgeteilt:

- Ist die Achse mit Referenznocken ausgestattet?
- Wird Nullimpuls oder Nocken-Signal zum Referenzieren eingesetzt?
- · Welchen Signalpegel liefert der Nocken im betätigten Zustand?

#### **Ablaufparameter**

Die Ablaufparameter legen das Verhalten während der Referenzpunktfahrt fest. Dazu gehört beispielsweise:

- Die Geschwindigkeit, mit der in den einzelnen Referenzpunktfahrtphasen gefahren wird.
- Die Fahrtrichtung, in der die Referenzpunktfahrt begonnen bzw. durchgeführt wird.
- Die Anzahl der Phasen (einphasig oder mehrphasig) bis zum Referenzieren.

#### Wirksamkeit der Parameter

Das Kapitel "Wirksamkeit der Parameter" [ > 44] gibt eine Übersicht, über die Wirksamkeit der Referenzpunktfahrt-Parameter in Abhängigkeit von der verwendeten Referenzpunktfahrt-Strategie.

Referenzpunktfahrt Seite 36 / 71



# 3.1 Systemparameter

### 3.1.1 Antriebstypen

Im Parameter P-AXIS-00020 wird der Antriebstyp der Achse eingestellt. Bei bestimmten Antriebstypen wie z.B. Simulation sind nur wenige referenzpunktfahrtspezifische Parameter von Bedeutung.

P-AXIS-00020 (antr\_typ)

- +/-10V Antriebe mit Inkrementalgebern unter Nutzung einer Funktionsbibliothek für den I/O-Zugriff (Option)
- 2. SERCOS
- 3. Profidrive
- 4. Antriebssimulation (durch digitalen Filter)
- 5. Lightbus
- 6. Terminal (+/-10V Antriebe mit Inkrementalgebern, transparenter Zugriff über Feldbusse)
- 7. Echtzeit-Ethernet

#### 3.1.1.1 Simulations-Achse

### Referenzpunktfahrtsimulation

Für Spindelachsen muss hierbei die Variable P-AXIS-00157 (ref\_ohne\_rev) im Achsmaschinendatensatz auf TRUE gesetzt werden.

Die Referenzpunktfahrt wird bei der Antriebssimulation automatisch ohne Nocken durchgeführt. Der Ablauf der Referenzpunktfahrt entspricht der bei konventionellen Antrieben.

Die Wegstrecke bis zum Eintreffen des Nullimpuls muss in der Variablen P-AXIS-00161 (rpf weg bis nip) im Achsmaschinendatensatz eingestellt werden.

#### 3.1.1.2 SERCOS Achse

#### Referenzpunktfahrt für SERCOS

SERCOS Achsen können auf die folgenden Arten referenziert werden:

(Der Typ der durchzuführenden Referenzpunktfahrt wird im Achsparameter P-AXIS-00299 (homing\_type) festgelegt.)

- Antriebsgeführt (Standard).
   In diesem Fall sind als CNC Parameter nur P-AXIS-00014 (abs\_pos\_gueltig) und P-AXIS-00015 (achs\_mode) zu parametrieren. Der Ablauf der Referenzpunktfahrt ist im Antrieb einzustellen
- CNC-geführt mit Nullimpulslatch.
- · CNC-geführt mit Nullimpulslatch über Messeingang
- · CNC-geführt auf Encoderüberlauf.

Referenzpunktfahrt Seite 37 / 71

#### Antriebsgeführte Referenzpunktfahrt

Die antriebsgeführte Referenzpunktfahrt ist die Standard-Einstellung für SERCOS-Achsen.

Bei der antriebsgeführten Referenzpunktfahrt startet die CNC das SERCOS-Kommando S-0-148 im Antrieb und wartet auf dessen Quittierung durch den Antrieb. Nach erfolgter Quittierung übernimmt die CNC die Antriebssollwerte als CNC-interne Sollwerte.

Die Parametrierung des Ablaufs der Referenzpunktfahrt sowie der Referenzposition des Antriebs erfolgt komplett im Antrieb.

Der Referenzschalter ist am Antrieb anzuschließen.

Dieser Referenzpunktfahrt-Type wird eingestellt, indem dem Achsparameter P-AXIS-00299 (homing type) der Wert `DRIVE CONTROLLED` zugewiesen wird.

Für SERCOS-Achsen, deren Lageregelung in der Steuerung durchgeführt wird, ist keine antriebsgeführte Referenzpunktfahrt möglich.

#### CNC geführt mit Nullimpulslatch über S-0-146

Bei der CNC geführten Referenzpunktfahrt stehen alle in Kapitel Ablaufstrategien der Referenzpunktfahrt [▶ 14] beschriebenen Ablaufvarianten zur Verfügung.

Die Nullimpulssuche wird durch Ausführen des SERCOS-Kommandos S-0-146 im Antrieb durchgeführt. Nach der Erfassung des Nullimpulses im Antrieb wird antriebsintern die Istposition auf die Referenzposition umgeschaltet und diese Position von der CNC übernommen.

Die Einstellung der Referenzposition erfolgt über den Achsparameter P-AXIS-00152 (pos\_refpkt). Dieser wird beim Start der Referenzpunktfahrt an den Antrieb übertragen.

Dieser Referenzpunktfahrt-Type wird eingestellt, indem dem Achsparameter P-AXIS-00299 (homing\_type) der Wert `CNC\_CONTROLLED` zugewiesen wird.

Dem Achsparameter P-AXIS-00299) (homing\_without\_zero\_pulse) ist der Wert 0 zuzuweisen; die Verwendung des antriebsinternen Nullimpulslatches wird durch den Parameter P-AXIS-00386 (drive supports cnc homing) aktiviert.

Für den Ablauf der Nullimpulssuche muss im Parameter P-AXIS-00388 [▶ 65] (cnc\_homing\_encoder) der Geber eingetragen werden, mit dem die Referenzpunktfahrt gemacht werden soll.

Weiter müssen zur Steuerung des Ablaufs der Referenzpunktfahrt Steuer- und Statusinformationen zwischen Antrieb und CNC übertragen werden. Dies kann entweder über die Echtzeitbits im Steuer- oder Statuswort des Antriebs erfolgen oder über die Signal-, Steuer- und Statusworte. Hierzu wird im Achsparameter P-AXIS-00387 (cnc\_homing\_rt\_bit\_layout) eingestellt, wie diese Bits übertragen werden. Passend zum eingestellten Wert von P-AXIS-00387 ist auch die Zuweisung der Steuer- und Statusbits im Antrieb vorzunehmen. Bei der Verwendung des Signalsteuerund Statuswortes sind diese in den zyklischen Prozessdaten zu konfigurieren.

Der Referenzschalter wird in der CNC ausgewertet, er kann entweder über das HLI oder über die Echtzeitstatusbits des Statuswortes an die CNC übertragen werden, siehe P-AXIS-00321 (reference cam signal).

Ein Parametrierungsbeispiel ist in Kapitel SERCOS mit Nullimpulslatch mit S-0-146 [▶ 47] zu sehen.

Referenzpunktfahrt Seite 38 / 71



### CNC geführt mit herstellerspezifischem Nullimpulslatch AX5000

Für AX5000-Antriebe der Firma Beckhoff besteht die Möglichkeit, ein Nullimpulslatch durch Verwendung der antriebsinternen Latch-Logik ohne Verwendung des Kommandos S-0-146 durchzuführen. Hierbei wird der gelatchte Nullimpuls als Messwert an die CNC übertragen. Hierzu ist die CNC für Messen mit einem SERCOS-Antrieb zu parametrieren (siehe Funktionsbeschreibung [FCT-C4]), zusätzlich ist im Antrieb Latchereignis das Auftreten des Nullimpulses zu konfigurieren. Das verwendete Echtzeitsteuer- und Echtzeitstatusbit ist der CNC im Parameter kenngr.echtzeit\_bit\_nr (P-AXIS-00060) mitzuteilen. Informationen zur Antriebsparametrierung sind der Herstellerdokumentation zu entnehmen.

Bei der CNC geführten Referenzpunktfahrt stehen alle im Kapitel Ablaufstrategien der Referenzpunktfahrt [▶ 14] beschriebenen Ablaufvarianten zur Verfügung.

Die Einstellung der Referenzposition erfolgt über den Achsparameter P-AXIS-00152 (pos refpkt).

Dieser Referenzpunktfahrt-Type wird eingestellt, indem dem Achsparameter P-AXIS-00299 (homing type) der Wert `CNC CONTROLLED` zugewiesen wird.

Dem Achsparameter P-AXIS-00299) (homing\_without\_zero\_pulse) ist der Wert 0 zuzuweisen.

### CNC geführt auf Encoderüberlauf

Falls der im Antrieb verwendete Geber eine Absolutposition innerhalb einer Motorumdrehung liefert (das bedeutet, die Geberposition ändert sich nicht, wenn der Antrieb aus- und wiedereingeschaltet wird), kann anstelle des Nullimpulses der Geberüberlauf zum Referenzieren verwendet werden.

Hierbei wird eine einstellbare Anzahl von Bits des Positionswertes vom Geber ausmaskiert und geprüft, wann diese Position überläuft. Durch diesen Encoderüberlauf ist eine mechanische Motorposition innerhalb einer Motorumdrehung eindeutig gekennzeichnet und kann damit zur Referenzierung verwendet werden.

Bei der CNC-geführten Referenzpunktfahrt stehen alle im Kapitel Ablaufstrategien der Referenzpunktfahrt [▶ 14] beschriebenen Ablaufvarianten zur Verfügung.

Die Aktivierung dieser Art der Referenzpunktfahrt erfolgt durch Setzen des Achsparameters P-AXIS-00294 (homing\_overflow\_evaluation) auf 1. Zusätzlich ist P-AXIS-00084 (homing\_without\_zero\_pulse) auf 0 zu setzen.

Die Anzahl der Bits des vom Antrieb übertragenen Lageistwertes, die zur Berechnung des Überlaufs verwendet werden sollen, ist in Achsparameter P-AXIS-00355 (encoder\_bit\_range) einzutragen.

Durch den Achsparameter P-AXIS-00354 (encoder\_overflow\_offset) kann die Position des Encoderüberlaufs noch innerhalb einer Motorumdrehung verschoben werden.

Die Einstellung der Referenzposition erfolgt über den Achsparameter P-AXIS-00152 (pos refpkt).



#### **Hinweis**

Diese Art der Referenzierung liefert nur dann reproduzierbare Ergebnisse, wenn der verwendete Geber eine Absolutposition innerhalb einer Motorumdrehung liefert. D.h. dass nach Aus- und Einschalten des Antriebs die vom Antrieb gelieferte Geberposition bei gleicher mechanischer Motorposition gleich sein muss. Im Zweifel Antriebsdokumentation bzw. Antriebshersteller konsultieren.

Referenzpunktfahrt Seite 39 / 71



## 3.1.2 Antriebssysteme mit Referenznocken

### 3.1.2.1 Referenznocken vorhanden

Bei einem Antriebssystem, das einen Referenznocken besitzt, muss der Systemparameter P-AXIS-00156 (ref\_ohne\_nocken) = 0 gesetzt werden. Dies hat unabhängig davon zu erfolgen, ob der Nocken nur für den Ablauf der Referenzpunktfahrt oder auch zum Referenzieren selbst verwendet wird.

P-AXIS-00156 (ref ohne nocken) 0: Referenznocken vorhanden

1: Referenznocken nicht vorhanden bzw. verwendet

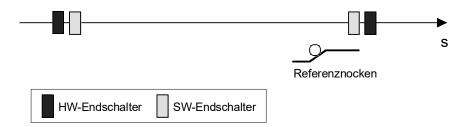



Abb. 16: Antriebssystem mit Referenznocken

## 3.1.2.2 Nockenschalter-Signalpegel

Der Pegel bei betätigtem Nockenschalter kann entweder logisch 0 (0-aktiv) oder 1 (1-aktiv) sein. Mit dem Ablaufparameter P-AXIS-00038 (cam\_level) wird der Pegel eingestellt.

P-AXIS-00038 (cam\_level) 0: 0-aktiv 1: 1-aktiv

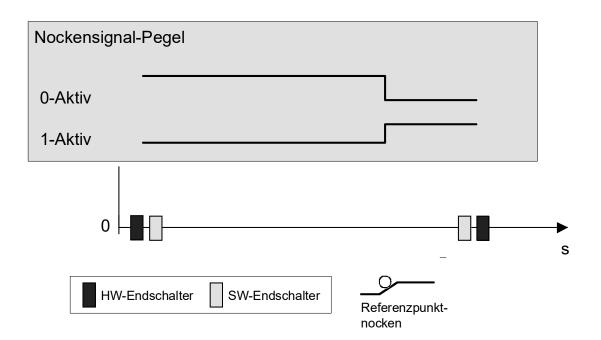



Abb. 17: Nockensignal-Pegel

Referenzpunktfahrt Seite 40 / 71

# 3.1.2.3 Zugriffsart auf das Nockensignal

Die Steuerung liest das Nockensignal achsspezifisch über die HLI-Schnittstelle.

P-AXIS-00036 (cam\_direct\_access)

0: Bereitstellung des Referenznocken-Signals in der HLI-Schnittstelle durch die PLC.

## 3.1.3 Antriebssysteme mit Nullimpuls

Besitzt das Antriebssystem ein Nullimpuls-Signal zum Referenzieren, so muss der Parameter P-AXIS-00084 (homing\_without\_zero\_pulse) = 0 gesetzt werden.

P-AXIS-00084 0: mit Nullimpuls (homing\_without\_zero\_pulse) 1: ohne Nullimpuls

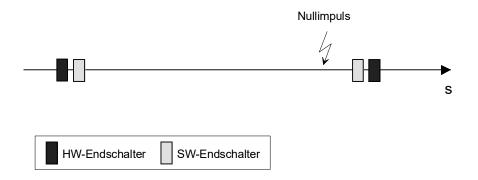



Abb. 18: Antriebssystem mit Nullimpuls

Referenzpunktfahrt Seite 41 / 71



# 3.2 Ablaufparameter

# 3.2.1 Referenzpunktfahrt mit oder ohne Reversieren

Mit diesem Parameter kann eingestellt werden, ob die Referenzpunktfahrt in

- · einer Phase oder in
- · mehreren Phasen durchgeführt werden soll.

P-AXIS-00157 (ref\_ohne\_rev) 0: mit Reversieren - mehrphasig

1: ohne Reversieren - einphasig

### 3.2.2 Verfahrrichtung bei der Referenzpunktfahrt

P-AXIS-00158 (ref richt) 1: Positive Verfahrrichtung (in Richtung positiver Achskoordinaten)

0: Negative Verfahrrichtung



### **Hinweis**

Die im Parameter P-AXIS-00158 (ref\_richt) angegebene Verfahrrichtung definiert für eine Referenzpunktfahrt mit Nocken (P-AXIS-00156 = 0) die Verfahrrichtung bei nicht betätigtem Nockenschalter.

### 3.2.3 Geschwindigkeiten für die Referenzpunktfahrt

Für die Referenzpunktfahrt stehen 2 Geschwindigkeiten zur Verfügung.

Über den Parameter P-AXIS-00064 wird festgelegt, ob in den Phasen 2 und 3 mit schneller oder langsamer Referenzpunktfahrtgeschwindigkeit gefahren wird.

P-AXIS-00219 (vb\_refmax)
P-AXIS-00218 (vb\_reflow)

Schnelle Geschwindigkeit in [µm/s] bzw. [°/s] Langsame Geschwindigkeit in [µm/s] bzw. [°/s]

P-AXIS-00064 (fast\_from\_cam) 0: Reversieren mit vb\_reflow

1: Reversieren mit vb\_refmax



#### **Hinweis**

Es gilt: P-AXIS-00219 (vb\_refmax) ≥ P-AXIS-00218 (vb\_reflow).

#### 3.2.4 Beschleunigung der Referenzpunktfahrt

Für die Referenzpunktfahrt kann mit dem P-AXIS-00285 die zu verwendende Beschleunigung eingestellt werden. Bei Verwendung eines nichtlinearen Beschleunigungsprofiles kann zusätzlich die Rampenzeit mit P-AXIS-00286 eingestellt werden

Falls P-AXIS-00285 (Beschleunigung) und P-AXIS-00286 (Rampenzeit) nicht parametriert sind bzw. den Wert 0 haben, werden die folgenden Werte verwendet:

Beschleunigung: es wird das Minimum der Werte P-AXIS-00005 und P-AXIS-00006 verwendet.

Referenzpunktfahrt Seite 42 / 71



• Rampenzeit: Ist der Parameter mit 0 oder zu klein belegt, so wird P-AXIS-00201 übernommen.

# 3.3 Referenzposition

Mit diesem Parameter wird die Position festgelegt, die beim Referenzieren von der Steuerung – respektive der Lageregelung – übernommen wird. Somit steht das gewünschte Achskoordinatensystem fest.

P-AXIS-00152 (pos refpkt)

Definition der Referenz-Position in [0,1µm] bzw. [0,0001°]

# 3.4 Spezifische Parameter für die Antriebssimulation

Dieser Parameter wird beim Antriebstyp "Antriebssimulation" verwendet, um den Fahrweg bis zum Referenzieren festzulegen. Die Referenzpunktfahrt erfolgt in diesem Fall einphasig, d.h. ohne reversieren. Es werden keine physikalischen I/O benötigt.

Die Einstellungen der anderen Referenzpunktfahrt-Parameter ist für diesen Antriebstyp bis auf den unten aufgeführten Parameter irrelevant.

P-AXIS-00161 (rpf\_weg\_bis\_nip)

Fahrweg bis das Referenzieren erfolgt in [0,1µm] bzw. [0,0001°]

Referenzpunktfahrt Seite 43 / 71

# 3.5 Wirksamkeit der Parameter

# Systemparameter zur Referenzpunktfahrt:

|                           | Messsystemtyp |                |                          |         |
|---------------------------|---------------|----------------|--------------------------|---------|
|                           | Nicht absolut |                |                          | absolut |
|                           | Nur Nocken    | nur Nullimpuls | Nocken und<br>Nullimpuls |         |
|                           | I             | II             | III                      | IV      |
| ref_ohne_nocken           | 0             | 1              | 0                        | -       |
| homing_without_zero_pulse | 1             | 0              | 0                        | -       |
| abs_pos_gueltig           | 0             | 0              | 0                        | 1       |
| cam_direct_access         | 0             | -              | 0                        | -       |
| cam_level                 | X             | -              | Х                        | -       |

# Wirksame Parameter bei den einzelnen Referenzpunktfahrt-Modi

|                              | Messsystemtyp |                |                          |         |
|------------------------------|---------------|----------------|--------------------------|---------|
|                              | Nicht absolut |                |                          | absolut |
|                              | Nur Nocken    | nur Nullimpuls | Nocken und<br>Nullimpuls |         |
|                              | I             | II             | III                      | IV      |
| ref_ohne_rev                 | X             | X              | X                        | -       |
| ref_richt                    | X             | Х              | X                        | -       |
| fast_from_cam                | X             | -              | X                        | -       |
| pos_refpkt                   | X             | Х              | X                        | -       |
| rpf_weg_bis_nip (Simulation) | -             | X              | X                        | -       |
| vb_reflow                    | X             | X              | X                        | -       |
| vb_refmax                    | X             | -              | Х                        | -       |

Referenzpunktfahrt Seite 44 / 71

# 3.6 Parametrierungsbeispiele

#### 3.6.1 Konventionelle Antriebe

#### Auszug aus Parameterliste für X-Achse

Ende

```
# *************
   Achsmaschinendaten X-Achse
 ***********
#
                                 1
kopf.achs nr
kopf.mds ident
                                 1
kopf.log achs name
                                 X Achse
.....
#
kenngr.achs mode
                                 1
kenngr.achs typ
                                 1
0
kenngr.ref richt
kenngr.homing_without_zero_pulse
                                 0
kenngr.fast_from_cam
                                 1
kenngr.ref ohne nocken
                                 0
kenngr.vorz richtung
                                 0
kenngr.beweg richt
                                 0
kenngr.ref ohne rev
                                 0
5
kenngr.antr typ
kenngr.abs pos gueltig
                                 0
getriebe[0].nummer
                                 1
getriebe[0].lslope profil.a grenz stufe 1
                                 10000
getriebe[0].lslope profil.a grenz stufe 2
                                 10000
getriebe[0].lslope profil.vb grenz stufe 1 2
                                 600000
getriebe[0].vb refmax
                                 100000
                                 20000
getriebe[0].vb_reflow
-2025000
getriebe[0].pos_refpkt
lr hw[0].nummer
                                 1
lr hw[0].cam direct access
```

Referenzpunktfahrt Seite 45 / 71

#### 3.6.2 Simulation

## Auszug aus Parameterliste für X-Achse

```
# *************
  Achsmaschinendaten X-Achse
 ************
kopf.achs nr
kopf.mds ident
                               1
kopf.log_achs_name
                               X Achse
.....
kenngr.achs mode
kenngr.achs_typ
kenngr.ref_richt
kenngr.antr_typ
                               4
kenngr.abs_pos_gueltig
                               0
getriebe[0].nummer
                               1
getriebe[0].lslope_profil.a_grenz_stufe_1
                               10000
getriebe[0].lslope profil.a grenz stufe 2
                               10000
getriebe[0].lslope profil.vb grenz stufe 1 2
                               600000
.....
getriebe[0].vb refmax
                               100000
                               20000
getriebe[0].vb reflow
-2025000
getriebe[0].pos refpkt
antr simu.rpf weg bis nip
                               200
```

Ende

Referenzpunktfahrt Seite 46 / 71

### 3.6.3 SERCOS mit Nullimpulslatch mit S-0-146

CNC-geführte Referenzpunktfahrt mit Nullimpulslatch über Kommando S-0-146.

Encoder für die Referenzpunktfahrt wird durch Auslesen von S-0-147 festgelegt. Als Echtzeitbits werden im Signalstatus- und Signalsteuerwort die Bits 14 und 15 verwendet.

#### Auszug aus Parameterliste

| kenngr.homing_type                    | CNC_CONTROLLED |
|---------------------------------------|----------------|
| kenngr.homing_without_zero_pulse      | 0              |
| antr.sercos.drive_supports_cnc_homing | 1              |
| antr.cnc homing encoder               | 1              |
| antr.sercos.cnc homing rt bit layout  | 16             |

### Im Antrieb sind die folgenden Parameter zu belegen:

S-0-147: Bit 2 = 0, Bit 4 = 1 (Bitnummern jeweils von 0 an gezählt).

S-0-27 (Zuweisung Signalsteuerwort): Listenelement 14 = 407,

Listenelement 15 = 404.

S-0-26 (Zuweisung Signalstatuswort): Listenelement 14 = 408,

Listenelement 15 = 403.

In den zyklischen Prozessdaten müssen S-0-144 und S-0-145 konfiguriert sein.

Referenzpunktfahrt Seite 47 / 71

# 4 Parameter

# 4.1 Übersicht

| ID           | Parameter                       | Beschreibung                                                                                                                                         |
|--------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| P-AXIS-00014 | abs_pos_gueltig                 | Kennung für absolutes Wegmesssystem                                                                                                                  |
| P-AXIS-00015 | achs_mode                       | Betriebsart einer Achse                                                                                                                              |
| P-AXIS-00036 | cam_direct_access               | Zugriff auf Referenznocken                                                                                                                           |
| P-AXIS-00038 | cam_level                       | Signalpegel für das Referenznockensignal                                                                                                             |
| P-AXIS-00064 | fast_from_cam                   | Schnelle/langsame Rückfahrt zum Referenznocken                                                                                                       |
| P-AXIS-00074 | gantry_slave_no_ho-<br>ming     | Unterdrücken Referenzpunktfahrt für Gantryslaveachse                                                                                                 |
| P-AXIS-00084 | homing_without_ze-<br>ro_pulse  | Referenzieren mit oder ohne Nullimpuls-Signal                                                                                                        |
| P-AXIS-00152 | pos_refpkt                      | Position des Referenzpunktes                                                                                                                         |
| P-AXIS-00156 | ref_ohne_nocken                 | Referenzieren mit oder ohne Referenznocken                                                                                                           |
| P-AXIS-00157 | ref_ohne_rev                    | Referenzieren mit oder ohne Reversieren >                                                                                                            |
| P-AXIS-00158 | ref_richt                       | Verfahrrichtung beim Referenzieren                                                                                                                   |
| P-AXIS-00161 | rpf_weg_bis_nip                 | Weg bis zum Eintreffen des Nullimpuls bei simulierter Referenz-<br>punktfahrt                                                                        |
| P-AXIS-00218 | vb_reflow                       | Langsame Geschwindigkeit der Referenzpunktfahrt                                                                                                      |
| P-AXIS-00219 | vb_refmax                       | Schnelle Geschwindigkeit der Referenzpunktfahrt                                                                                                      |
| P-AXIS-00294 | homing_overflow_eva-<br>luation | Referenzieren auf Geberüberlauf.                                                                                                                     |
| P-AXIS-00299 | homing_type                     | Art der Referenzpunktfahrt                                                                                                                           |
| P-AXIS-00321 | reference_cam_signal            | Eingang des Referenznockensignals (nur SERCOS)                                                                                                       |
| P-AXIS-00354 | encoder_overlow_off-<br>set     | Offset der Encoderüberlaufs                                                                                                                          |
| P-AXIS-00355 | encoder_bit_range               | Encoder-Bitbreite beim Referenzieren auf Encoderüberlauf                                                                                             |
| P-AXIS-00386 | drive_sup-<br>ports_cnc_homing  | CNC geführte Referenzpunktfahrt mit Nullimpulslatch über S-0-146 durchführen (nur SERCOS).                                                           |
| P-AXIS-00387 | cnc_homing_rt_bit_lay-<br>out   | Zuweisung der bei der CNC geführten Referenzpunktfahrt mit Nullimpulslatch über S-0-146 zu verwendenden Echtzeitsteuer- und Statusbits (nur SERCOS). |
| P-AXIS-00388 | cnc_homing_encoder              | Festlegung des für die Referenzpunktfahrt zu verwendenden Gebers.                                                                                    |
| P-AXIS-00412 | homing_max_move-<br>ment_dist   | Maximal zulässiger Weg für die Referenzpunktfahrt                                                                                                    |
| P-AXIS-00425 | reference_check.bit_nr          | Bitnummer des zur Referenzüberwachung verwendeten Bits.                                                                                              |

Referenzpunktfahrt Seite 48 / 71

| ID           | Parameter                               | Beschreibung                                                                              |
|--------------|-----------------------------------------|-------------------------------------------------------------------------------------------|
| P-AXIS-00426 | reference_checkele-<br>ment_name        | Name des Elements der zyklischen Prozessdaten, im dem das Referenzsignal übertragen wird. |
| P-AXIS-00494 | shift_offset_zero_pul-<br>se_activation | Verzögerte Aktivierung der Nullimpulslogik bei einer CNC-geführten Referenzpunktfahrt.    |

# 4.2 Beschreibung

| P-AXIS-00014  | Kennung für absolutes Wegmesssystem                                                                                                   |      |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Beschreibung  | Wird ein absolutes Wegmesssystem verwendet, so muss der Parameter auf 1 gesetzt werden. Somit wird keine Referenzpunktfahrt benötigt. |      |  |
| Parameter     | kenngr.abs_pos_gueltig                                                                                                                |      |  |
| Datentyp      | BOOLEAN                                                                                                                               |      |  |
| Datenbereich  | 0/1                                                                                                                                   |      |  |
| Achstypen     | T, R, S                                                                                                                               |      |  |
| Dimension     | T:                                                                                                                                    | R,S: |  |
| Standardwert  | 0                                                                                                                                     |      |  |
| Antriebstypen | Simulation, SERCOS,                                                                                                                   |      |  |
| Anmerkungen   |                                                                                                                                       |      |  |

| P-AXIS-00015  | Betriebsart einer Achse                                           |                  |  |
|---------------|-------------------------------------------------------------------|------------------|--|
| Beschreibung  | Achsen können in unterschiedlichen Betriebsarten gefahren werden. |                  |  |
| Parameter     | kenngr.achs_mode                                                  | kenngr.achs_mode |  |
| Datentyp      | UNS32                                                             |                  |  |
| Datenbereich  | 0x00000001 - 0x10000000                                           |                  |  |
| Achstypen     | T, R, S                                                           |                  |  |
| Dimension     | T:                                                                | R,S:             |  |
| Standardwert  | 0x00000001                                                        |                  |  |
| Antriebstypen |                                                                   |                  |  |
| Anmerkungen   |                                                                   |                  |  |

Referenzpunktfahrt Seite 49 / 71

# Folgende Betriebsarten können parametriert werden<sup>(1)</sup>:

| Wert       | Bedeutung                                                                                                                                                                                                                                                   |                       |      | Interpo | latortyp     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------|---------|--------------|
|            | Beschreibung                                                                                                                                                                                                                                                | ACHSMODE_             |      | Bahn    | Spin-<br>del |
| 0x0000001  | Die Achse wird wie eine Linearachse betrieben; es erfolgt keine Modulorechnung. Z.B. Rundachse mit eingeschränktem Fahrbereich; muss bei Linearachsen standardmäßig eingestellt werden.                                                                     | LINEAR <sup>(1)</sup> | T, R | X       |              |
| 0x00000004 | Es erfolgt stets eine Modulorechnung nach Erreichen der Zielposition. Unabhängig von der angewählten Betriebsart für rotatorische Achsen erfolgt im Lageregler stets eine Modulorechnung. Somit kann ggf. eine Modulokreiskompensation durchgeführt werden. | MODULO <sup>(1)</sup> | R    | ×       | X            |
| 0x00000040 | Achse wird als Plandrehachse eingesetzt (Drehfunktionen).                                                                                                                                                                                                   | PLANDREHEN            | Т    | X       |              |
| 0x00000080 | Achse wird als Längsdrehachse eingesetzt (Drehfunktionen).                                                                                                                                                                                                  | LAENGSDREHEN          | Т    | X       |              |
| 0x00000100 | Bei einer Spindel kann das automatische Referenzieren vor einem Spindel-Richten verhindert werden. Dies ist nur relevant, wenn die Achse nicht referenziert ist. Funktion ist antriebsabhängig.                                                             | KEINE_AUTO_RPF        | R    |         | X            |
| 0x00000200 | Achse für die kinematische 'C-Achs'-<br>Transformation.                                                                                                                                                                                                     | CAX                   | R    | Х       | Х            |
| 0x00000400 | Modulorechnung in der Einheit einer Linearachse. (Bspl.: Band mit Motorantrieb, wobei die Position auf dem Band in mm programmiert werden soll).                                                                                                            | MODULO_LINEAR         | R    | X       |              |
| 0x00000800 | Achse ist für das mechanische Blockieren durch die SPS freigegeben.  Dieser Achsmode ist bei TwinCAT-Systemen nicht verfügbar.                                                                                                                              | CLAMPABLE             | T, R | X       |              |
| 0x00001000 | Achse trägt einen Werkstück-Drehtisch.                                                                                                                                                                                                                      | ROT_TABLE             | T, R | Х       |              |
| 0x00008000 | Überwachung bzgl. Kollision.                                                                                                                                                                                                                                | COLL_CHECK            | Т    | Х       |              |
| 0x00010000 | Masterachse einer Gantrykopplung.                                                                                                                                                                                                                           | GANTRY_MASTER         | T, R | Х       |              |
| 0x00020000 | Slaveachse einer Gantrykopplung.                                                                                                                                                                                                                            | GANTRY_SLAVE          | T, R | X       |              |
| 0x00040000 | Kennung für PLC-Spindel mit Achsinterface                                                                                                                                                                                                                   | SPIND-<br>LE_EXT_CTRL | R    |         | Х            |
| 0x00080000 | Eingangsachse für zusätzliche externe<br>Positionssollwerte (z.B. Abstandsrege-<br>lung)                                                                                                                                                                    | EXT_CTRL_INPUT        | Т    | Х       |              |

Referenzpunktfahrt Seite 50 / 71



| Wert       | Bedeutung                                                                                             |                                                 | Achs-<br>typ | Interpo | latortyp |
|------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------|---------|----------|
| 0x00100000 | Reine Geberachse, nur zur Istwertanzeige (z.B. Fliessband)                                            | COUNTER                                         | T, R         | X       | X        |
| 0x00200000 | Leitachse in Verbindung mit einzelner<br>Vorschubachse und G194 (Ueber-<br>schleifen mit DIST_MASTER) | LEAD_AXIS                                       | T, R         | Х       |          |
| 0x00400000 | Die Auflösung (wegaufz/wegaufn) dieser Achse kann geändert werden.                                    | ALLOW_RESOLU-<br>TION_<br>CHANGE <sup>(2)</sup> | T, R         | Х       | Х        |
| 0x00800000 | Wegabhängige Dynamikgewichtung für diese Achse möglich.                                               | DYNAMIC_WEIGH-<br>TING                          | T, R         | Х       |          |
| 0x02000000 | Wegachse für Werkzeugmittelpunkts-<br>bahn                                                            | PATH_LENGTH_TC<br>P                             | R            | Х       |          |
| 0x04000000 | Wegachse für Konturbahn                                                                               | PATH_LENGTH_<br>CONTOUR                         | R            | Х       |          |
| 0x08000000 | Virtuelle Leitachse für Bahninterpolation                                                             | VIRT_LEAD_AXIS                                  | R            | Х       |          |
| 0x10000000 | Achse trägt die Anpressrolle beim Kantenstossen.                                                      | LAH_OFF-<br>SET_AXIS                            | R            | Х       |          |



### **Hinweis**

(1) Es **muss** immer einer der zwei folgenden Achsmodi angegeben werden:

- ACHSMODE\_LINEAR oder ACHSMODE\_MODULO

Alle anderen Bits des Parameters achs mode sind Zusatzangaben! Zum Beispiel ist die Angabe ACHSMODE MODULO LINEAR nur in Verbindung mit ACHSMODE MODULO sinnvoll.



#### **Hinweis**

(2) Die Änderung bestimmter Achsparameter, wie z.B. die Wegauflösung, ist bei lau-fender Steuerung evtl. kritisch. Aus diesem Grund kann die Möglichkeit zur Änderung durch das Bit AL-LOW\_RESOLUTION\_CHANGE im Achsmode freigeschalten werden. Ansonsten können diese Parameter (P-AXIS-00234, P-AXIS-00233) nach dem Start der Steuerung nicht mehr geändert werden.

Ist das Bit ALLOW\_RESOLUTION\_CHANGE gesetzt, so wird auch bei der Änderung weiterer kritischen Parameter zunächst geprüft, ob die Achse interpoliert wird. Wird die Achse momentan verfahren, so wird das Parameterupdate abgelehnt.

Seite 51 / 71 Referenzpunktfahrt

| P-AXIS-00036  | Zugriff auf Nockensignale                                                                     |                                                        |  |
|---------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Beschreibung  | Der Parameter definiert den Zugriff auf Nockensignale.                                        |                                                        |  |
| Parameter     | Ir_hw[i].cam_direct_access                                                                    |                                                        |  |
| Datentyp      | BOOLEAN                                                                                       |                                                        |  |
| Datenbereich  | 0/1                                                                                           |                                                        |  |
| Achstypen     | T, R, S                                                                                       |                                                        |  |
| Dimension     | T:                                                                                            | R,S:                                                   |  |
| Standardwert  | 1                                                                                             |                                                        |  |
| Antriebstypen | Konventionell, Terminal, Lightbus, Profidrive                                                 |                                                        |  |
| Anmerkungen   | Dieser Eintrag wird beim Aktualisieren der Ach sierung ist ein Neustart der Steuerung notwend | sparameterliste nicht übernommen, zur Aktuali-<br>lig. |  |

| P-AXIS-00038  | Signalpegel für Nockensignale                                                                                                                                                                        |      |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Beschreibung  | Der Parameter definiert den Signalpegel für Nockensignale.                                                                                                                                           |      |  |
| Parameter     | lr_hw[i].cam_level                                                                                                                                                                                   |      |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                              |      |  |
| Datenbereich  | 0: 0-Signal ist aktiver Level.                                                                                                                                                                       |      |  |
|               | Wenn der Referenznocken betätigt ist, liegt auf dem HLI im Control-Unit Element pAC[axis_idx]^.addr^.McControlLr_Data.MCControlBoolUnit_ReferenceCam.X_Command der Wert FALSE an (siehe auch [HLI]). |      |  |
|               | 1: 1-Signal ist aktiver Level (Standard).                                                                                                                                                            |      |  |
|               | Wenn der Referenznocken betätigt ist, liegt auf dem HLI im Control-Unit Element pAC[axis_idx]^.addr^.McControlLr_Data.MCControlBoolUnit_ReferenceCam.X_Command der Wert TRUE an (siehe auch [HLI]).  |      |  |
| Achstypen     | T, R, S                                                                                                                                                                                              |      |  |
| Dimension     | T:                                                                                                                                                                                                   | R,S: |  |
| Standardwert  | 1                                                                                                                                                                                                    |      |  |
| Antriebstypen | Konventionell, Terminal, Lightbus, Profidrive                                                                                                                                                        |      |  |
| Anmerkungen   |                                                                                                                                                                                                      |      |  |

Referenzpunktfahrt Seite 52 / 71

| P-AXIS-00064  | Schnelle/langsame Rückfahrt vom Nocken                                                                         |    |
|---------------|----------------------------------------------------------------------------------------------------------------|----|
| Beschreibung  | Mit diesem Parameter kann die Geschwindigkeit beim Reversieren zum Referenznocken festgelegt werden.           |    |
| Parameter     | kenngr.fast_from_cam                                                                                           |    |
| Datentyp      | BOOLEAN                                                                                                        |    |
| Datenbereich  | C: Langsame Rückfahrt von der Schaltnocke     Schnelle Rückfahrt von der Schaltnocke (Standard)                |    |
| Achstypen     | T, R                                                                                                           |    |
| Dimension     | T:                                                                                                             | R: |
| Standardwert  | 1                                                                                                              |    |
| Antriebstypen |                                                                                                                |    |
| Anmerkungen   | Weitere hardwarespezifische Einstellungen zum Thema Referenzieren mit Nocken siehe P-AXIS-00036 - P-AXIS-00039 |    |

| P-AXIS-00074  | Unterdrücken Referenzpunktfahrt für Gantryslaveachse                                                                                                                                                                                                                                                                              |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Mit diesem Parameter kann die Referenzpunktfahrt für Gantryslaveachsen unterdrückt werden. Nach erfolgter Referenzpunktfahrt der Masterachse werden die in der Achsparameterliste der Slaveachsen eingetragenen Referenzpositionen übernommen und die Überwachung der Gantrydifferenz zwischen Master- und Slaveachsen gestartet. |  |
| Parameter     | kenngr.gantry_slave_no_homing                                                                                                                                                                                                                                                                                                     |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                                                                                                                                           |  |
| Datenbereich  | 0/1                                                                                                                                                                                                                                                                                                                               |  |
| Achstypen     | T, R                                                                                                                                                                                                                                                                                                                              |  |
| Dimension     | T: R:                                                                                                                                                                                                                                                                                                                             |  |
| Standardwert  | 0                                                                                                                                                                                                                                                                                                                                 |  |
| Antriebstypen |                                                                                                                                                                                                                                                                                                                                   |  |
| Anmerkungen   | Dieser Parameter wird nicht bei Spindelachsen unterstützt.                                                                                                                                                                                                                                                                        |  |

Referenzpunktfahrt Seite 53 / 71

|               | 1                                                                                                                                                                                                                                     |         |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| P-AXIS-00084  | Referenzpunktfahrt nur mit Nocken (ohne Nullimpuls)                                                                                                                                                                                   |         |  |
| Beschreibung  | Die Referenzposition wird durch das Fahren auf den Nocken ermittelt.                                                                                                                                                                  |         |  |
| Parameter     | kenngr.homing_without_zero_pulse                                                                                                                                                                                                      |         |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                                               | BOOLEAN |  |
| Datenbereich  | O: Positionierung der Achse auf Schaltnocken mit der Berücksichtigung des Nullimpulses des Drehgebers (Standard-Wert).  1: Positionierung der Achse auf Schaltnocken ohne den Nullimpuls vom Drehgeber zu berücksichtigen (ungenau!). |         |  |
| Achstypen     | T, R                                                                                                                                                                                                                                  |         |  |
| Dimension     | T:                                                                                                                                                                                                                                    | R:      |  |
| Standardwert  | 0                                                                                                                                                                                                                                     |         |  |
| Antriebstypen |                                                                                                                                                                                                                                       |         |  |
| Anmerkungen   | Weitere hardwarespezifische Einstellungen zum Thema Referenzieren mit Nocken siehe P-AXIS-00036 - P-AXIS-00039                                                                                                                        |         |  |

| P-AXIS-00152  | Position des Referenzpunktes                                                                                               |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Beim Erfassen des Referenzpunktes wird der in P-AXIS-00152 eingetragene Wert als Absolutposition für die Achse übernommen. |  |
| Parameter     | getriebe[i].pos_refpkt                                                                                                     |  |
| Datentyp      | SGN32                                                                                                                      |  |
| Datenbereich  | swe_neg < pos_refpkt < swe_pos                                                                                             |  |
| Achstypen     | T, R, S                                                                                                                    |  |
| Dimension     | T: 0.1µm R,S: 0.0001°                                                                                                      |  |
| Standardwert  | 0                                                                                                                          |  |
| Antriebstypen | Simulation, Konventionell, Terminal, Lightbus, Profidrive, CANopen                                                         |  |
| Anmerkungen   |                                                                                                                            |  |

Referenzpunktfahrt Seite 54 / 71

| P-AXIS-00156  | Referenzpunktfahrt ohne Nocken                                                                                                                                                                                  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Es kann eine Umschaltung der Referenzpunktfahrtstrategie erfolgen, so dass ohne Nocken (z.B. nur mit Nullimpuls), d.h. ohne Revertieren, referenziert wird. In diesem Fall ist P-AXIS-00156 auf TRUE zu setzen. |  |
| Parameter     | kenngr.ref_ohne_nocken                                                                                                                                                                                          |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                         |  |
| Datenbereich  | 0/1                                                                                                                                                                                                             |  |
| Achstypen     | T, R, S                                                                                                                                                                                                         |  |
| Dimension     | T:                                                                                                                                                                                                              |  |
| Standardwert  | 0                                                                                                                                                                                                               |  |
| Antriebstypen | Konventionell, Terminal, Lightbus, Profidrive                                                                                                                                                                   |  |
| Anmerkungen   | Nur für analoge Spindeln zu belegen. Wenn P-AXIS-00156 mit 1 (TRUE) belegt ist, dann <b>muss</b> P-AXIS-00157 mit 1 (TRUE) belegt sein.                                                                         |  |

| P-AXIS-00157  | Referenzpunktfahrt ohne Revertieren                                                                                                                                                                             |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Mit P-AXIS-00157 kann eine Einschränkung bei der Referenzpunktfahrt erfolgen, die ein Revertieren verbietet.                                                                                                    |  |
| Parameter     | kenngr.ref_ohne_rev                                                                                                                                                                                             |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                         |  |
| Datenbereich  | 0/1                                                                                                                                                                                                             |  |
| Achstypen     | T, R, S                                                                                                                                                                                                         |  |
| Dimension     | T:                                                                                                                                                                                                              |  |
| Standardwert  | 0                                                                                                                                                                                                               |  |
| Antriebstypen | Konventionell, Terminal, Lightbus, Profidrive                                                                                                                                                                   |  |
| Anmerkungen   | Die Geschwindigkeit beim Reversieren wird mit dem Parameter P-AXIS-00064 (fast_from_cam) eingestellt. Mit dem Reversieren kann wiederholt mit langsamer Geschwindigkeit auf den Referenznocken gefahren werden. |  |
|               | Nur für analoge Spindeln zu belegen. P-AXIS-00157 <b>muss</b> mit 1 (TRUE) belegt sein, wenn P-AXIS-00156 mit 1 (TRUE) belegt ist.                                                                              |  |

Referenzpunktfahrt Seite 55 / 71

| P-AXIS-00158  | Vorzugsrichtung der Achse bei Referenzpunktfahrt                                                                                 |      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|------|
| Beschreibung  | Mit P-AXIS-00158 erfolgt die Angabe der Fahrtrichtung bei der Referenzpunktfahrt, wenn die Achse nicht auf einem Nocken steht.   |      |
|               | Die Angabe des Signalpegels bei betätigtem Referenzschalter erfolgt durch den Achsparameter P-AXIS-00038.                        |      |
| Parameter     | kenngr.ref_richt                                                                                                                 |      |
| Datentyp      | BOOLEAN                                                                                                                          |      |
| Datenbereich  | 0: Negative Richtung                                                                                                             |      |
|               | 1: Positive Richtung                                                                                                             |      |
| Achstypen     | T, R, S                                                                                                                          |      |
| Dimension     | T:                                                                                                                               | R,S: |
| Standardwert  | 0                                                                                                                                |      |
| Antriebstypen | Simulation, Konventionell, Terminal, Lightbus, Profidrive                                                                        |      |
| Anmerkungen   | Positive Richtung bedeutet, dass die Koordinatenwerte zunehmen.  Negative Richtung bedeutet, dass die Koordinatenwerte abnehmen. |      |

| P-AXIS-00161  | Weg bis zum Nullimpuls bei Referenzpunktfahrtsimulation                              |  |
|---------------|--------------------------------------------------------------------------------------|--|
| Beschreibung  | Der Parameter definiert den Weg bis zum Nullimpuls bei Referenzpunktfahrtsimulation. |  |
| Parameter     | antr.simu.rpf_weg_bis_nip                                                            |  |
| Datentyp      | SGN32                                                                                |  |
| Datenbereich  | MIN(SGN32) ≤ rpf_weg_bis_nip ≤ MAX(SGN32)                                            |  |
| Achstypen     | T, R, S                                                                              |  |
| Dimension     | T: 0.1µm R,S: 0.0001°                                                                |  |
| Standardwert  | 10                                                                                   |  |
| Antriebstypen | Simulation                                                                           |  |
| Anmerkungen   |                                                                                      |  |

Referenzpunktfahrt Seite 56 / 71

| P-AXIS-00218  | Langsame Geschwindigkeit zur genauen Bestimmung des Referenzpunktes                                                                                    |                       |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Beschreibung  | Sowohl die Fahrt herunter vom Nocken als auch die Fahrt auf den Nocken mit Referenzieren erfolgt mit der in P-AXIS-00218 festgelegten Geschwindigkeit. |                       |  |
| Parameter     | getriebe[i].vb_reflow                                                                                                                                  | getriebe[i].vb_reflow |  |
| Datentyp      | UNS32                                                                                                                                                  |                       |  |
| Datenbereich  | 1 ≤ vb_reflow ≤ P-AXIS-00219                                                                                                                           |                       |  |
| Achstypen     | T, R, S                                                                                                                                                |                       |  |
| Dimension     | T: μm/s R,S: 0.001°/s                                                                                                                                  |                       |  |
| Standardwert  | 16666                                                                                                                                                  |                       |  |
| Antriebstypen | Simulation, Konventionell, Terminal, Lightbus, Profidrive                                                                                              |                       |  |
| Anmerkungen   |                                                                                                                                                        |                       |  |

| P-AXIS-00219  | Schnelle Geschwindigkeit zur Erfassung des Referenznockens                                                                                                                |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Befindet sich die Achse beim Start der Referenzpunktfahrt nicht auf dem Nocken, so erfolgt die Fahrt auf den Nocken mit der in P-AXIS-00219 festgelegten Geschwindigkeit. |  |
| Parameter     | getriebe[i].vb_refmax                                                                                                                                                     |  |
| Datentyp      | UNS32                                                                                                                                                                     |  |
| Datenbereich  | P-AXIS-00218 ≤ vb_refmax ≤ P-AXIS-00212                                                                                                                                   |  |
| Achstypen     | T, R, S                                                                                                                                                                   |  |
| Dimension     | T: μm/s R,S: 0.001°/s                                                                                                                                                     |  |
| Standardwert  | 83333                                                                                                                                                                     |  |
| Antriebstypen | Konventionell, Terminal, Lightbus, Profidrive                                                                                                                             |  |
| Anmerkungen   |                                                                                                                                                                           |  |

Referenzpunktfahrt Seite 57 / 71

| P-AXIS-00294  | Anwahl der Referenziermethode 'Auswertung des Encoderüberlaufes'                                                                                                                                                           |      |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Beschreibung  | Diese Referenziermethode wird mit dem Parameter P-AXIS-00294 aktiviert. Bei Verwendung dieser Option ist dem Parameter P-AXIS-00084 der Wert 0 zuzuweisen.                                                                 |      |  |
|               | Die Anzahl der zur Erkennung des Encoderüberlaufs auszuwertenden Bits wird dabei durch den Parameter P-AXIS-00355 eingestellt.                                                                                             |      |  |
| Parameter     | kenngr.homing_overflow_evaluation                                                                                                                                                                                          |      |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                                    |      |  |
| Datenbereich  | 0: Keine Auswertung des Encoderüberlaufes (Default).                                                                                                                                                                       |      |  |
|               | 1: Auswertung des Encoderüberlaufes beim Referenzieren aktiv.                                                                                                                                                              |      |  |
| Achstypen     | T, R, S                                                                                                                                                                                                                    |      |  |
| Dimension     | T:                                                                                                                                                                                                                         | R,S: |  |
| Standardwert  | 0                                                                                                                                                                                                                          |      |  |
| Antriebstypen | Lightbus                                                                                                                                                                                                                   |      |  |
| Anmerkungen   | Diese Referenziermethode führt nur dann zu einer reproduzierbaren Referenzposition der Achse, wenn der Encoderüberlauf immer an der mechanisch gleichen Position der Achse erfolgt. Dies ist z. B. bei Resolvern der Fall. |      |  |

Referenzpunktfahrt Seite 58 / 71



| P-AXIS-00299  | Art der Referenzpunktfahrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
| Beschreibung  | Bei der Referenzpunktfahrt werden zwei Arten unterschieden:  1. NC-geführte Referenzpunktfahrt 2. Antriebsgeführte Referenzpunktfahrt erfolgt die Sollwerterzeugung und die Ablaufsteuerung (Auswertung von Referenzpunktfahrt erfolgt die Bewegungserzeugung sowie die Auswertung von Nockensignalen bzw. Nullimpulsen im Antrieb.  Für Antriebestypen (P-AXIS-00018), für die beide Referenzpunktfahrt-Arten implementiert sind, kann mit diesem Parameter die Art der Referenzpunktfahrt parametriert werden.                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | der CNC.<br>gungserzeugung sowie die<br>nktfahrt-Arten implementiert |
| Parameter     | kenngr.homing.homing_type (Anmerkung: Siehe *-Hinweis u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unten)                                                       |                                                                      |
| Datentyp      | STRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                      |
| Datenbereich  | CNC_CONTROLLED: Es wird eine CNC-geführte Referenzpunktfahrt durchgeführt.  DRIVE_CONROLLED: Es wird eine antriebsgeführte Referenzpunktfahrt durchgeführt.  DISABLED: Es kann für diese Achse keine Referenzfahrt durchgeführt werden. Bei Beauftragen einer Referenzfahrt (z.B. G74) gibt die CNC die Fehlermeldung P-ERR-50685 oder P-ERR-60313 aus. Diese Einstellung ist nur für Achsen mit Absolutwertgeber (siehe P-AXIS-00014) sinnvoll.  IGNORE_ABS_POS: Achsen mit dieser Einstellung werden bei einer Referenzfahrt übergangen d. h. bei programmierten G74 <achsname> wird keine Referenzfahrt für diese Achse durchgeführt. Im Gegensatz zur Einstellung DISABLED gibt die CNC hierbei keine Fehlermeldung aus. Diese Einstellung ist nur für Achsen mit einem Absolutmesssystem zulässig d. h. der Parameter kenngr.abs_pos_gueltig (siehe P-AXIS-00014) muss auf 1 gesetzt sein. Ansonsten gibt die CNC die Warnmeldung P-ERR-110584.</achsname> |                                                              |                                                                      |
| Achstypen     | T, R, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              |                                                                      |
| Dimension     | T:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                                      |
| Standardwert  | CNC_CONTROLLED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                            |                                                                      |
| Antriebstypen |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                      |
| Anmerkungen   | * alternativ: kenngr.homing_type (alte Syntax)  Falls an der Beauftragung einer Referenzfahrt G74 mehrere Achsen beteiligt sind, z.B. G74 X1 Y1 Z2 und die Referenzart homing_type unterschiedlich eingestellt sind, führen Achsen mit homing_type != IGNORE_ABS_POS bzw. DISABLED eine Referenzfahrt durch, während für unterdrückte Achsen keine Achsbewegung stattfindet. Es ist daher sicherzustellen, dass dabei keine Kollisionen auftreten können!  Falls eine Referenzpunktfahrtart eingestellt wird, die vom Antriebstyp nicht unterstützt wird, erfolgt die Ausgabe einer Fehlermeldung P-ERR-110384 und die Korrektur des Wertes auf den Default-Referenzpunktfahrttyp.  Falls der Eintrag nicht vorhanden ist, wird der für den jeweiligen Antriebstyp gültige Defaulttyp verwendet:                                                                                                                                                                |                                                              |                                                                      |
|               | Falls der Eintrag nicht vorhand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rttyp.                                                       |                                                                      |
|               | Falls der Eintrag nicht vorhand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rttyp.                                                       |                                                                      |
|               | Falls der Eintrag nicht vorhand verwendet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ttyp.<br>en ist, wird der für den jeweilige                  | n Antriebstyp gültige Defaulttyp                                     |
|               | Falls der Eintrag nicht vorhand verwendet:  Antriebstyp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ttyp. en ist, wird der für den jeweilige  CNC_CONTROLLED     | n Antriebstyp gültige Defaulttyp                                     |
|               | Falls der Eintrag nicht vorhand verwendet:  Antriebstyp  Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ttyp. en ist, wird der für den jeweilige  CNC_CONTROLLED  X* | n Antriebstyp gültige Defaulttyp  DRIVE_CONTROLLED                   |

Referenzpunktfahrt Seite 59 / 71



| RT-Ethernet           | X* |   |
|-----------------------|----|---|
| PROFIDRIVE            | X* |   |
| CANopen               | X* | X |
| * Default homing type |    |   |

| P-AXIS-00321  | Eingangsschnittstelle für Referenznockensignal                                                                                                                                                                                            |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Beschreibung  | In der Standardeinstellung wird bei einer NC-geführten Referenzpunktfahrt das Referenznockensignal vom HLI [HLI] gelesen.                                                                                                                 |  |  |
|               | Bei bestimmten Antriebstypen ist es möglich, die digitalen Eingänge des Antriebsreglers als Referenznockeneingang zu verwenden. In diesem Fall ist im Parameter P-AXIS-00321 anzugeben, welcher Eingang zu verwenden ist.                 |  |  |
|               | Falls der Parameter nicht angegeben ist, wird das Referenznockensignal von der PLC-Schnittstelle gelesen.                                                                                                                                 |  |  |
| Parameter     | antr.reference_cam_signal                                                                                                                                                                                                                 |  |  |
| Datentyp      | STRING                                                                                                                                                                                                                                    |  |  |
| Datenbereich  | Abhängig vom Antriebstyp sind unterschiedliche Bezeichnungen für die digitalen Referenzno ckensignale möglich:                                                                                                                            |  |  |
|               | Antriebstyp SERCOS:                                                                                                                                                                                                                       |  |  |
|               | PLC Referenznocken vom HLI lesen (Standard)                                                                                                                                                                                               |  |  |
|               | RT_STATUS_BIT_1 Referenznocken aus Echtzeitstatusbit 1 lesen                                                                                                                                                                              |  |  |
|               | RT_STATUS_BIT_2 Referenznocken aus Echtzeitstatusbit 2 lesen                                                                                                                                                                              |  |  |
|               | Antriebstyp CANopen:  PLC Referenznocken vom HLI lesen (Standard)  STATUS_DIG_INPUTS (*) Referenznocken aus Objekt 0x60FD : Digital inputs                                                                                                |  |  |
| Achstypen     | T, R, S                                                                                                                                                                                                                                   |  |  |
| Dimension     | T: R,S:                                                                                                                                                                                                                                   |  |  |
| Standardwert  | PLC                                                                                                                                                                                                                                       |  |  |
| Antriebstypen | SERCOS, Lightbus,CANopen                                                                                                                                                                                                                  |  |  |
| Anmerkungen   | <b>Achtung:</b> Die Verwendung der Echtzeitstatusbits ist <b>nur</b> bei einer NC-geführten Referenzpunktfahrt möglich, siehe auch [CMS-A1].                                                                                              |  |  |
|               | Wenn die Digitaleingänge des Antriebs verwendet werden sollen, müssen diese ebenfalls mit dem Inbetriebnahmewerkzeug des Antriebsherstellers entsprechend parametriert werden.                                                            |  |  |
|               | Ebenso muss eventuell die Übertragung der Digitaleingänge im zyklischen Telegramm konfiguriert werden.                                                                                                                                    |  |  |
|               | (*) Zur Übertragung des Referenznockenzustands muss in den zyklischen Prozessdaten das Objekt 0x60FD: Digital Inputs konfiguriert sein (s. DS402 Antriebsprofil), ansonsten wird eine Fehlermeldung mit der Nummer P-ERR-70292 ausgegeben |  |  |

Seite 60 / 71 Referenzpunktfahrt

| P-AXIS-00354  | Verschiebung des Encoderüberlaufes                                                                                                                                                                                                        |            |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Beschreibung  | Beim Referenzieren auf Encoderüberlauf kann durch diesen Parameter die Referenzposition verschoben werden. Ein positiver Wert für P-AXIS-00354 verschiebt dabei die Referenzposition in positiver Bewegungsrichtung der Achse.            |            |
| Parameter     | antr.encoder_overflow_offset                                                                                                                                                                                                              |            |
| Datentyp      | SGN32                                                                                                                                                                                                                                     |            |
| Datenbereich  | applikationsspezifisch                                                                                                                                                                                                                    |            |
| Achstypen     | T, R, S                                                                                                                                                                                                                                   |            |
| Dimension     | T: 0.1µm                                                                                                                                                                                                                                  | R,S: 0.1µm |
| Standardwert  | 0                                                                                                                                                                                                                                         |            |
| Antriebstypen | SERCOS, Lightbus, CANopen                                                                                                                                                                                                                 |            |
| Anmerkungen   | Die Referenzposition kann nur innerhalb einer Encoderumdrehung verschoben werden. Falls größere Werte für P-AXIS-00354 parametriert werden, erfolgt die Ausgabe der Fehlermeldung P-ERR-70310 sowie die Korrektur von P-AXIS-00354 auf 0. |            |

| P-AXIS-00355  | Anzahl Bits zur Auswertung des Encoderüberlaufs                                                                                                                                                                                                                                                                                                                                        |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Beim Referenzieren auf Encoderüberlauf wird mit diesem Parameter festgelegt, wie viele Bits des übertragenen Lageistwertes zur Detektion des Encoderüberlaufs herangezogen werden. Hierbei wird der Lageistwert des Antriebssystems mit dem Wert (2 <sup>P-AXIS-00355</sup> -1) UND verknüpft sowie der Unter- bzw. Überlauf des resultierenden Wertes als Encoderüberlauf betrachtet. |  |
| Parameter     | antr.encoder_bit_range                                                                                                                                                                                                                                                                                                                                                                 |  |
| Datentyp      | UNS08                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Datenbereich  | 1 31                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Achstypen     | T, R, S                                                                                                                                                                                                                                                                                                                                                                                |  |
| Dimension     | T: R,S:                                                                                                                                                                                                                                                                                                                                                                                |  |
| Standardwert  | 0                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Antriebstypen | SERCOS, Lightbus,CANopen                                                                                                                                                                                                                                                                                                                                                               |  |
| Anmerkungen   |                                                                                                                                                                                                                                                                                                                                                                                        |  |

Referenzpunktfahrt Seite 61 / 71



| P-AXIS-00386  | CNC-geführte Referenzpunktfahrt mit Antriebsunterstützung durchführen (SERCOS)                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Beschreibung  | Standardmässig wird für SERCOS-Antriebe eine CNC-geführte Referenzpunktfahrt nur in der Steuerung durchgeführt, die Lageistwerte im Antriebsregler werden dabei nicht verändert.                                                                                                                                                                                                                                                                           |                                                  |  |
|               | Wenn der Antrieb das SERCOS-Kommando S-0-146 (CNC-geführte Referenzpunktfahrt) unterstützt, kann mit diesem Parameter aktiviert werden, dass bei einer CNC-geführten Referenzpunktfahrt das Kommando S-0-146 verwendet wird. Der Vorteil dieser Methode ist, dass nach erfolgter Referenzpunktfahrt auch die antriebsinternen Lagedaten einen Referenzbezug haben, so dass z. B. die antriebsinterne Softwareendschalterüberwachung verwendet werden kann. |                                                  |  |
|               | Als Referenzposition wird der Achsparameter F<br>der Referenzpunktfahrt an den Antrieb übertrag                                                                                                                                                                                                                                                                                                                                                            | P-AXIS-00152 verwendet. Dieser wird während gen. |  |
| Parameter     | antr.sercos.drive_supports_cnc_homing                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |  |
| Datentyp      | BOOLEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |  |
| Datenbereich  | 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |  |
| Achstypen     | T, R, S                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |  |
| Dimension     | T:                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R,S:                                             |  |
| Standardwert  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |  |
| Antriebstypen | SERCOS                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |  |
| Anmerkungen   | Dieser Parameter wird aktuell nicht für Spindel                                                                                                                                                                                                                                                                                                                                                                                                            | n unterstützt.                                   |  |
|               | Zusätzlich zum Kommando S-0-146 muss der Antrieb noch die folgenden Kommandos unterstützen:                                                                                                                                                                                                                                                                                                                                                                |                                                  |  |
|               | S-0-171 (Verschiebung berechnen)                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |  |
|               | S-0-172 (Verschiebung ins Referenzsystem)                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |  |
|               | S-0-191 (Referenzbezug löschen)                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |  |
|               | Angaben hierzu entnehmen Sie bitte der Doku                                                                                                                                                                                                                                                                                                                                                                                                                | mentation des Antriebsherstellers.               |  |

| P-AXIS-00387  | Zuweisung Steuer- und Statusbits für CNC-geführte Referenzpunktfahrt (SERCOS)                                                                                                                                                                         |      |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Beschreibung  | Zur Durchführung einer CNC-geführten Referenzpunktfahrt mit Antriebsunterstützung sind je zwei Steuer- und Statusbits notwendig. Es können die Echtzeitsteuer- und statusbits verwendet werden oder alternativ Bits im Signalsteuer- bzw. Statuswort. |      |
| Parameter     | antr.sercos.cnc_homing_rt_bit_layout                                                                                                                                                                                                                  |      |
| Datentyp      | UNS16                                                                                                                                                                                                                                                 |      |
| Datenbereich  | 1 ≤ cnc_homing_rt_bit_layout ≤ 16                                                                                                                                                                                                                     |      |
| Achstypen     | T, R, S                                                                                                                                                                                                                                               |      |
| Dimension     | T:                                                                                                                                                                                                                                                    | R,S: |
| Standardwert  | 0                                                                                                                                                                                                                                                     |      |
| Antriebstypen | SERCOS                                                                                                                                                                                                                                                |      |
| Anmerkungen   | Wenn die Steuer und Statusbits in den Signalsteuer- und Statusworten übertragen werden sollen, sind diese in den zyklischen Prozessdaten zu konfigurieren, andernfalls wird die Fehlermeldung P-ERR-70295 ausgegeben.                                 |      |

Seite 62 / 71 Referenzpunktfahrt

# Zuordnung der Werte von P-AXIS-00387 zu den möglichen Bitbelegungen:

| Wert | Prozessdatum     | Bitnummer               | Bedeutung                 | Ident   |
|------|------------------|-------------------------|---------------------------|---------|
| 1    | Steuerwort       | Echtzeitbit 1 (S-0-301) | Referenzfreigabe          | S-0-407 |
|      |                  | Echtzeitbit 2 (S-0-303) | Lagesollwert referenziert | S-0-404 |
|      | Statuswort       | Echtzeitbit 1 (S-0-305) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Echtzeitbit 2 (S-0-307) | Lageistwert referenziert  | S-0-403 |
| 2    | Signalsteuerwort | Bit 0 (S-0-27[0])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 1 (S-0-27[1])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 0 (S-0-26[0])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 1 (S-0-26[1])       | Lageistwert referenziert  | S-0-403 |
| 3    | Signalsteuerwort | Bit 1 (S-0-27[1])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 2 (S-0-27[2])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 1 (S-0-26[1])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 2 (S-0-26[2])       | Lageistwert referenziert  | S-0-403 |
| 4    | Signalsteuerwort | Bit 2 (S-0-27[2])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 3 (S-0-27[3])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 2 (S-0-26[2])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 3 (S-0-26[3])       | Lageistwert referenziert  | S-0-403 |
| 5    | Signalsteuerwort | Bit 3 (S-0-27[3])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 4 (S-0-27[4])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 3 (S-0-26[3])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 4 (S-0-26[4])       | Lageistwert referenziert  | S-0-403 |
| 6    | Signalsteuerwort | Bit 4 (S-0-27[4])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 5 (S-0-27[5])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 4 (S-0-26[4])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 5 (S-0-26[5])       | Lageistwert referenziert  | S-0-403 |
| 7    | Signalsteuerwort | Bit 5 (S-0-27[5])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 6 (S-0-27[6])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 5 (S-0-26[5])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 6 (S-0-26[6])       | Lageistwert referenziert  | S-0-403 |
| 8    | Signalsteuerwort | Bit 6 (S-0-27[6])       | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 7 (S-0-27[7])       | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 6 (S-0-26[6])       | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 7 (S-0-26[7])       | Lageistwert referenziert  | S-0-403 |

Referenzpunktfahrt Seite 63 / 71

| Wert | Prozessdatum     | Bitnummer           | Bedeutung                 | Ident   |
|------|------------------|---------------------|---------------------------|---------|
| 9    | Signalsteuerwort | Bit 7 (S-0-27[7])   | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 8 (S-0-27[8])   | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 7 (S-0-26[7])   | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 8 (S-0-26[8])   | Lageistwert referenziert  | S-0-403 |
| 10   | Signalsteuerwort | Bit 8 (S-0-27[8])   | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 9 (S-0-27[9])   | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 8 (S-0-26[8])   | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 9 (S-0-26[9])   | Lageistwert referenziert  | S-0-403 |
| 11   | Signalsteuerwort | Bit 9 (S-0-27[9])   | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 10 (S-0-27[10]) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 9 (S-0-26[9])   | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 10 (S-0-26[10]) | Lageistwert referenziert  | S-0-403 |
| 12   | Signalsteuerwort | Bit 10 (S-0-27[10]) | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 11 (S-0-27[11]) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 10 (S-0-26[10]) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 11 (S-0-26[11]) | Lageistwert referenziert  | S-0-403 |
| 13   | Signalsteuerwort | Bit 11 (S-0-27[11]) | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 12 (S-0-27[1]2) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 11 (S-0-26[11]) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 12 (S-0-26[1]2) | Lageistwert referenziert  | S-0-403 |
| 14   | Signalsteuerwort | Bit 12 (S-0-27[12]) | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 13 (S-0-27[13]) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 12 (S-0-26[12]) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 13 (S-0-26[13]) | Lageistwert referenziert  | S-0-403 |
| 15   | Signalsteuerwort | Bit 13 (S-0-27[13]) | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 14 (S-0-27[1]4) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 13 (S-0-26[13]) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 14 (S-0-26[14]) | Lageistwert referenziert  | S-0-403 |
| 16   | Signalsteuerwort | Bit 14 (S-0-27[14]) | Referenzfreigabe          | S-0-407 |
|      |                  | Bit 15 (S-0-27[15]) | Lagesollwert referenziert | S-0-404 |
|      | Signalstatuswort | Bit 14 (S-0-26[14]) | Referenzmarke erfasst     | S-0-408 |
|      |                  | Bit 15 (S-0-26[15]) | Lageistwert referenziert  | S-0-403 |

Referenzpunktfahrt Seite 64 / 71



| P-AXIS-00388  | Für CNC geführte Referenzpunktfah                                                                                                                                                                          | rt benutzter Geber (SERCOS) |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Beschreibung  | Manche Antriebstypen unterstützen die Verwendung von mehreren Gebern (Motorgeber und externe Geber). Mit diesem Parameter wird festgelegt, welcher Geber bei der Referenzpunktfahrt verwendet werden soll. |                             |  |
| Parameter     | antr.cnc_homing_encoder                                                                                                                                                                                    |                             |  |
| Datentyp      | SGN16                                                                                                                                                                                                      |                             |  |
| Datenbereich  | 0: Wert ist nicht konfiguriert. Wenn P-AXIS-00386 den Wert 1 hat ist diesem Parameter einen gültigen Wert (0, 1, 2) zuweisen.                                                                              |                             |  |
|               | 1: Es wird versucht, den verwendeten Geber automatisch zu bestimmen, indem z.B. bei SER-COS der Antriebsparameter S-0-147 gelesen wird.                                                                    |                             |  |
|               | 2: Motorgeber                                                                                                                                                                                              |                             |  |
|               | 3: Externer Geber                                                                                                                                                                                          |                             |  |
| Achstypen     | T, R, S                                                                                                                                                                                                    |                             |  |
| Dimension     | T:                                                                                                                                                                                                         | R,S:                        |  |
| Standardwert  | 0                                                                                                                                                                                                          |                             |  |
| Antriebstypen | SERCOS                                                                                                                                                                                                     |                             |  |
| Anmerkungen   | Dieser Parameter wird aktuell nur für SERCOS unterstützt                                                                                                                                                   |                             |  |
|               | Wenn bei SERCOS Antrieben der in S-0-147 eingestellte Geber nicht zu dem in P-AXIS-00388 eingestellten Wert passt, wird die Fehlermeldung P-ERR-70453 ausgegeben.                                          |                             |  |
|               | Dieser Wert ist nur wirksam, wenn der Achsparameter P-AXIS-00386 den Wert 1 hat.                                                                                                                           |                             |  |

| P-AXIS-00412  | Maximaler Weg während Referenzpunktfahrt                                                                                                                                                                                                                                            |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Mit diesem Parameter kann für Spindeln und Rundachsen ein maximal zurückzulegender Weg während der Referenzpunktfahrt parametriert werden. Wird der maximal zulässige Fahrweg überschritten, wird die Referenzpunktfahrt abgebrochen und eine Fehlermeldung P-ERR-70394 ausgegeben. |  |
|               | Damit kann erreicht werden, dass die Referenzpunktfahrt abgebrochen wird, wenn z. B. der Referenznocken wegen eines Verdrahtungsfehlers nicht gefunden wird.                                                                                                                        |  |
|               | Der Parameter wirkt nur für die Achstypen Spindel und Rundachse, siehe P-AXIS-00018. Wird dem Parameter bei Linearachsen ein Wert ungleich Null zugewiesen, so wird die Fehlermeldung P-ERR-110545 ausgegeben und der Wert auf 0 korrigiert.                                        |  |
|               | Durch den Wert 0 wird die Wegüberwachung deaktiviert.                                                                                                                                                                                                                               |  |
| Parameter     | kenngr.homing_max_movement_dist                                                                                                                                                                                                                                                     |  |
| Datentyp      | UNS32                                                                                                                                                                                                                                                                               |  |
| Datenbereich  | 0 ≤ homing_max_movement_dist ≤ MAX(UNS32)                                                                                                                                                                                                                                           |  |
| Achstypen     | R, S                                                                                                                                                                                                                                                                                |  |
| Dimension     | R,S: 0.0001°                                                                                                                                                                                                                                                                        |  |
| Standardwert  | 0                                                                                                                                                                                                                                                                                   |  |
| Antriebstypen |                                                                                                                                                                                                                                                                                     |  |
| Anmerkungen   | Damit die Referenzpunktfahrt vollständig durchgeführt werden kann, muss der für die Weg-<br>überwachung parametrierte Weg mindestens gleich dem Modulobereich der Achse sein.                                                                                                       |  |

Seite 65 / 71 Referenzpunktfahrt

| P-AXIS-00425  | Bitnummer von Signal 'Antrieb ist referenziert' bei Referenzüberwachung                                                                                                           |    |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Beschreibung  | In diesem Parameter wird die Nummer des Bits eingetragen, in dem bei aktiver Referenzüberwachung das Signal 'Antrieb ist referenziert' vom Antrieb zur Steuerung übertragen wird. |    |  |
|               | Das niederwertigste Bit hat die Bitnummer 0.                                                                                                                                      |    |  |
|               | Der Maximalwert ist abhängig von der Länge des konfigurierten Telegrammelementes, das zur Übertragung verwendet wird.                                                             |    |  |
|               | Länge Telegrammelement Max. Bitnummer                                                                                                                                             |    |  |
|               | -1 Keine Referenzüberwachung 2 15                                                                                                                                                 |    |  |
|               |                                                                                                                                                                                   |    |  |
|               | 4                                                                                                                                                                                 | 31 |  |
|               | Bei Parametrierung einer ungültigen Bitnummer wird die Fehlermeldung P-ERR-11054 gegeben.                                                                                         |    |  |
| Parameter     | antr.reference_check.bit_nr                                                                                                                                                       |    |  |
| Datentyp      | SGN16                                                                                                                                                                             |    |  |
| Datenbereich  | 0 ≤ bit_nr ≤ Max. Bitnummer                                                                                                                                                       |    |  |
| Achstypen     | T, R, S                                                                                                                                                                           |    |  |
| Dimension     | T:                                                                                                                                                                                |    |  |
| Standardwert  | -1                                                                                                                                                                                |    |  |
| Antriebstypen | SERCOS                                                                                                                                                                            |    |  |
| Anmerkungen   | Dieser Parameter wird nur bei SERCOS-Antrieben verwendet.                                                                                                                         |    |  |

Referenzpunktfahrt Seite 66 / 71

| P-AXIS-00426  | Elementname von Signal 'Antrieb ist referen                                                                                                                                                        | nziert' bei Referenzüberwachung      |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Beschreibung  | In diesem Parameter wird der Name des Elementes der zyklischen Eingangsprozessdaten eingetragen, mit dem das Signal 'Antrieb ist referenziert' vom Antrieb übertragen wird.                        |                                      |  |
|               | Falls der in P-AXIS-00426 eingetragene Parameter nicht in den zyklischen Prozessdaten des Antriebs gefunden wird, erfolgt die Ausgabe einer Fehlermeldung P-ERR-70401.                             |                                      |  |
| Parameter     | antr.reference_check.element_name                                                                                                                                                                  |                                      |  |
| Datentyp      | STRING                                                                                                                                                                                             |                                      |  |
| Datenbereich  | <leere zeichenkette="">: Referenzüberwachung deaktiviert</leere>                                                                                                                                   |                                      |  |
|               | S-0-0135: Falls zur Übertragung des Referenzsignals das SERCOS-Statuswort verwendet wird, ist dem Parameter der Wert 'S-0-0135' zuzuweisen                                                         |                                      |  |
|               | <telegrammelement_name>:andernfalls der Name eines in den zyklischen Eingangsprozessdaten konfigurierten Telegrammelementes.</telegrammelement_name>                                               |                                      |  |
| Achstypen     | T, R, S                                                                                                                                                                                            |                                      |  |
| Dimension     | T:                                                                                                                                                                                                 | R,S:                                 |  |
| Standardwert  | *                                                                                                                                                                                                  |                                      |  |
| Antriebstypen | SERCOS                                                                                                                                                                                             |                                      |  |
| Anmerkungen   | * Hinweis: Der Standardwert der Variablen ist ein Leerstring.                                                                                                                                      |                                      |  |
|               | Die Referenzüberwachung wird aktiviert, indem diesem Parameter ein Wert zugewiesen wird. Bei Aktivierung der Referenzüberwachung ist auch dem Parameter P-AXIS-00425 ein gültiger Wert zuzuweisen. |                                      |  |
|               | Dieser Parameter wird derzeit nur bei SERCOS                                                                                                                                                       | S-Antrieben verwendet.               |  |
|               | Eine Änderung dieses Parameters durch Lister ERR-110550).                                                                                                                                          | naktualisieren ist nicht möglich (P- |  |

| P-AXIS-00494  | Verzögerte Aktivierung der Nullimpulslogik                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beschreibung  | Im Parameter kann bei einer CNC-geführten Referenzpunktfahrt (siehe P-AXIS-00299) das Aktivieren der Nullimpulslogik nach Betätigen des Referenzschalters verzögert werden. Dies ist hilfreich, falls Referenzschalter und Nullimpuls sehr nahe beieinander liegen und dadurch die Detektion des Nullimpulses nicht zuverlässig erfolgen kann, da je nach Auslöseschnelligkeit des Referenzschalters der nächste oder erst der folgende Nullimpuls gefunden wird. |  |
| Parameter     | kenngr.shift_offset_zero_pulse_activation                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Datentyp      | UNS32                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Datenbereich  | 0 ≤ shift_offset_zero_pulse_activation ≤ MAX_UNS32                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Achstypen     | T, R, S                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Dimension     | T: 0.1µm R,S: 0.0001°                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Standardwert  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Antriebstypen | Konventionell, SERCOS, Terminal, Lightbus, Profidrive, CANopen                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Anmerkungen   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

Referenzpunktfahrt Seite 67 / 71



# 4.3 Abhängigkeiten von der Art des Referenzierungsverfahrens

Wie eingangs erwähnt stehen unterschiedliche Referenzierungsverfahren zur Verfügung. Die Auswahl eines Verfahrens erfolgt durch Vorgabe in den jeweiligen Achs-MDS (achsmds*X*.lis) über das Element kenngr.homing\_homing\_type. Dort wird über eine definierte Zeichenkette das jeweilige Verfahren ausgewählt.

Die zur Verfügung stehenden Verfahren sind der folgenden Tabelle zu entnehmen:

| Methode                             | Schlüsselwort |
|-------------------------------------|---------------|
| Fahren auf Festanschlag, NC-geführt | TORQ          |
| Kompatibilitätsmodus                | NONE          |

#### Verhalten der Achse bei Referenzierungstyp NONE

- Ist die Beauftragung ausgeführt, ist für die Achse der Wert als Referenzposition übernommen worden, der im Element "getriebe[i].pos\_refpkt" im Achs-MDS (achsmdsX.lis) hinterlegt ist.
- Das Verhalten der Achse während der Beauftragung hängt vom parametrierten Antriebstyp ab.
  Ist für die Achse der Antriebstyp DSE (siehe kenngr.antr\_typ) parametriert, wird sich die Achse
  bei einer Beauftragung des FB nicht bewegen. Es wird unmittelbar die parametrierte Referenzposition übernommen und der Ausgang "Done" auf TRUE gesetzt.
- Ist für die Achse der Antriebstyp **Simulation** (siehe kenngr.antr\_typ) parametriert, wird sich die Achse bewegen und nach einem kurzen Weg die parametrierte Referenzposition übernehmen.

#### Verhalten der Achse bei Referenzierungstyp TORQ

- Ist für die Achse der Antriebstyp DSE parametriert, wird sich die Achse bei einer Beauftragung des FB bewegen.
- Bei Anwendung des Referenzierungstyp TORQ sind weitere Parameter in dem Achs-MDS (achsmdsX.lis) mit Werten zu belegen. Es gibt allgemeine Parametern, die sich auf den Referenzierungsvorgang als solchen beziehen. Sie sind in der Achsliste mit dem Präfix kenngr.homing. versehen.

Referenzpunktfahrt Seite 68 / 71



# 5 Anhang

# 5.1 Anregungen, Korrekturen und neueste Dokumentation

Sie finden Fehler, haben Anregungen oder konstruktive Kritik? Gerne können Sie uns unter documentation@isg-stuttgart.de kontaktieren. Die aktuellste Dokumentation finden Sie in unserer Onlinehilfe (DE/EN):



QR-Code Link: https://www.isg-stuttgart.de/documentation-kernel/

Der o.g. Link ist eine Weiterleitung zu:

https://www.isg-stuttgart.de/fileadmin/kernel/kernel-html/index.html



### **Hinweis**

#### Mögliche Änderung von Favoritenlinks im Browser:

Technische Änderungen der Webseitenstruktur betreffend der Ordnerpfade oder ein Wechsel des HTML-Frameworks und damit der Linkstruktur können nie ausgeschlossen werden.

Wir empfehlen, den o.g. "QR-Code Link" als primären Favoritenlink zu speichern.

#### PDFs zum Download:

DE:

https://www.isg-stuttgart.de/produkte/softwareprodukte/isg-kernel/dokumente-und-downloads

EN:

https://www.isg-stuttgart.de/en/products/softwareproducts/isg-kernel/documents-and-downloads

E-Mail: documentation@isg-stuttgart.de

Referenzpunktfahrt Seite 69 / 71



# Stichwortverzeichnis

# Р

| P-AXIS-00014 |    |
|--------------|----|
| P-AXIS-00015 | 49 |
| P-AXIS-00036 | 52 |
| P-AXIS-00038 |    |
| P-AXIS-00064 |    |
| P-AXIS-00074 |    |
| P-AXIS-00084 |    |
| P-AXIS-00152 |    |
| P-AXIS-00156 |    |
| P-AXIS-00157 |    |
| P-AXIS-00158 |    |
| P-AXIS-00161 |    |
| P-AXIS-00218 |    |
| P-AXIS-00219 |    |
| P-AXIS-00294 |    |
| P-AXIS-00299 |    |
| P-AXIS-00321 | 60 |
| P-AXIS-00354 |    |
| P-AXIS-00355 |    |
| P-AXIS-00386 | 62 |
| P-AXIS-00387 |    |
| P-AXIS-00388 |    |
| P-AXIS-00412 |    |
| P-AXIS-00425 |    |
| P-AXIS-00426 | 67 |
| P-AXIS-00494 | 67 |

Seite 70 / 71 Referenzpunktfahrt



© Copyright
ISG Industrielle Steuerungstechnik GmbH
STEP, Gropiusplatz 10
D-70563 Stuttgart
Alle Rechte vorbehalten
www.isg-stuttgart.de
support@isg-stuttgart.de

